These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22442942)

  • 1. Resource recycling through artificial lightweight aggregates from sewage sludge and derived ash using boric acid flux to lower co-melting temperature.
    Hu SH; Hu SC; Fu YP
    J Air Waste Manag Assoc; 2012 Feb; 62(2):262-9. PubMed ID: 22442942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-melting technology in resource recycling of sludge derived from stone processing.
    Hu SH; Hu SC; Fu YP
    J Air Waste Manag Assoc; 2012 Dec; 62(12):1449-58. PubMed ID: 23362764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of sewage sludge in the manufacture of lightweight aggregate.
    Franus M; Barnat-Hunek D; Wdowin M
    Environ Monit Assess; 2016 Jan; 188(1):10. PubMed ID: 26635022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of heating temperature on the sintering characteristics of sewage sludge ash.
    Lin KL; Chiang KY; Lin DF
    J Hazard Mater; 2006 Feb; 128(2-3):175-81. PubMed ID: 16153769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge.
    Tsai CC; Wang KS; Chiou IJ
    J Hazard Mater; 2006 Jun; 134(1-3):87-93. PubMed ID: 16386840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight aggregate made from sewage sludge and incinerated ash.
    Chiou IJ; Wang KS; Chen CH; Lin YT
    Waste Manag; 2006; 26(12):1453-61. PubMed ID: 16431096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling potential of air pollution control residue from sewage sludge thermal treatment as artificial lightweight aggregates.
    Bialowiec A; Janczukowicz W; Gusiatin ZM; Thornton A; Rodziewicz J; Zielinska M
    Waste Manag Res; 2014 Mar; 32(3):221-7. PubMed ID: 24616344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lightweight bricks manufactured from ground soil, textile sludge, and coal ash.
    Chen C; Wu H
    Environ Technol; 2018 Jun; 39(11):1359-1367. PubMed ID: 28488931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The recycling of MSW incinerator bottom ash by sintering.
    Wang KS; Tsai CC; Lin KL; Chiang KY
    Waste Manag Res; 2003 Aug; 21(4):318-29. PubMed ID: 14531518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The recycling of incinerated sewage sludge ash as a raw material for CaO-Al2O3-SiO2-P2O5 glass-ceramic production.
    Zhang Z; Zhang L; Yin Y; Liang X; Li A
    Environ Technol; 2015; 36(9-12):1098-103. PubMed ID: 25358410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of lightweight aggregate from dry sewage sludge and coal ash.
    Wang X; Jin Y; Wang Z; Nie Y; Huang Q; Wang Q
    Waste Manag; 2009 Apr; 29(4):1330-5. PubMed ID: 19008090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lightweight bricks manufactured from water treatment sludge and rice husks.
    Chiang KY; Chou PH; Hua CR; Chien KL; Cheeseman C
    J Hazard Mater; 2009 Nov; 171(1-3):76-82. PubMed ID: 19596512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.
    Başpinar MS; Kahraman E; Görhan G; Demir I
    Waste Manag Res; 2010 Jan; 28(1):4-10. PubMed ID: 19423597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A research on sintering characteristics and mechanisms of dried sewage sludge.
    Wang X; Jin Y; Wang Z; Mahar RB; Nie Y
    J Hazard Mater; 2008 Dec; 160(2-3):489-94. PubMed ID: 18440699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes.
    Moreno-Maroto JM; González-Corrochano B; Alonso-Azcárate J; Rodríguez L; Acosta A
    J Environ Manage; 2017 Sep; 200():229-242. PubMed ID: 28582746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate sludge: thermal transformation and use as lightweight aggregate material.
    Loutou M; Hajjaji M; Mansori M; Favotto C; Hakkou R
    J Environ Manage; 2013 Nov; 130():354-60. PubMed ID: 24121546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of Synthetic Lightweight Aggregates from Industrial Sludge.
    Chen HJ; Chen PC; Peng CF; Huang CW
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on cement mortar and concrete made with sewage sludge ash.
    Chang FC; Lin JD; Tsai CC; Wang KS
    Water Sci Technol; 2010; 62(7):1689-93. PubMed ID: 20935389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.
    Wang KS; Chiou IJ
    Waste Manag Res; 2004 Oct; 22(5):383-9. PubMed ID: 15560443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives.
    Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y
    J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.