These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 22443147)

  • 1. The role of environmental factors in regulating the development of cartilaginous grafts engineered using osteoarthritic human infrapatellar fat pad-derived stem cells.
    Liu Y; Buckley CT; Downey R; Mulhall KJ; Kelly DJ
    Tissue Eng Part A; 2012 Aug; 18(15-16):1531-41. PubMed ID: 22443147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrapatellar fat pad-derived stem cells maintain their chondrogenic capacity in disease and can be used to engineer cartilaginous grafts of clinically relevant dimensions.
    Liu Y; Buckley CT; Almeida HV; Mulhall KJ; Kelly DJ
    Tissue Eng Part A; 2014 Nov; 20(21-22):3050-62. PubMed ID: 24785365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells.
    Luo L; Thorpe SD; Buckley CT; Kelly DJ
    Biomed Mater; 2015 Sep; 10(5):055011. PubMed ID: 26391756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining freshly isolated chondroprogenitor cells from the infrapatellar fat pad with a growth factor delivery hydrogel as a putative single stage therapy for articular cartilage repair.
    Ahearne M; Liu Y; Kelly DJ
    Tissue Eng Part A; 2014 Mar; 20(5-6):930-9. PubMed ID: 24090441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad.
    Carroll SF; Buckley CT; Kelly DJ
    J Biomech; 2014 Jun; 47(9):2115-21. PubMed ID: 24377681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering articular cartilage-like grafts by self-assembly of infrapatellar fat pad-derived stem cells.
    Mesallati T; Buckley CT; Kelly DJ
    Biotechnol Bioeng; 2014 Aug; 111(8):1686-98. PubMed ID: 25097913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion in the presence of FGF-2 enhances the functional development of cartilaginous tissues engineered using infrapatellar fat pad derived MSCs.
    Buckley CT; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Jul; 11():102-11. PubMed ID: 22658159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform.
    He P; Fu J; Wang DA
    Acta Biomater; 2016 Apr; 35():87-97. PubMed ID: 26911880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes.
    Buckley CT; Vinardell T; Kelly DJ
    Osteoarthritis Cartilage; 2010 Oct; 18(10):1345-54. PubMed ID: 20650328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources.
    Vinardell T; Sheehy EJ; Buckley CT; Kelly DJ
    Tissue Eng Part A; 2012 Jun; 18(11-12):1161-70. PubMed ID: 22429262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining BMP-6, TGF-β3 and hydrostatic pressure stimulation enhances the functional development of cartilage tissues engineered using human infrapatellar fat pad derived stem cells.
    Liu Y; Buckley CT; Mulhall KJ; Kelly DJ
    Biomater Sci; 2013 Jul; 1(7):745-752. PubMed ID: 32481828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
    Lindberg GCJ; Longoni A; Lim KS; Rosenberg AJ; Hooper GJ; Gawlitta D; Woodfield TBF
    Acta Biomater; 2019 Feb; 85():117-130. PubMed ID: 30572166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering zonal cartilaginous tissue by modulating oxygen levels and mechanical cues through the depth of infrapatellar fat pad stem cell laden hydrogels.
    Luo L; O'Reilly AR; Thorpe SD; Buckley CT; Kelly DJ
    J Tissue Eng Regen Med; 2017 Sep; 11(9):2613-2628. PubMed ID: 27138274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition-function relations of cartilaginous tissues engineered from chondrocytes and mesenchymal stem cells isolated from bone marrow and infrapatellar fat pad.
    Vinardell T; Buckley CT; Thorpe SD; Kelly DJ
    J Tissue Eng Regen Med; 2011 Oct; 5(9):673-83. PubMed ID: 21953865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Donor-matched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment.
    Lopa S; Colombini A; Stanco D; de Girolamo L; Sansone V; Moretti M
    Eur Cell Mater; 2014 Apr; 27():298-311. PubMed ID: 24760577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recapitulating aspects of the oxygen and substrate environment of the damaged joint milieu for stem cell-based cartilage tissue engineering.
    O'hEireamhoin S; Buckley CT; Jones E; McGonagle D; Mulhall KJ; Kelly DJ
    Tissue Eng Part C Methods; 2013 Feb; 19(2):117-27. PubMed ID: 22834895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells.
    Meyer EG; Buckley CT; Steward AJ; Kelly DJ
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1257-65. PubMed ID: 21783134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-oxygen conditions promote synergistic increases in chondrogenesis during co-culture of human osteoarthritic stem cells and chondrocytes.
    Critchley SE; Eswaramoorthy R; Kelly DJ
    J Tissue Eng Regen Med; 2018 Apr; 12(4):1074-1084. PubMed ID: 29178320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of self-assembly and hydrogel encapsulation as a means to engineer functional cartilaginous grafts using culture expanded chondrocytes.
    Mesallati T; Buckley CT; Kelly DJ
    Tissue Eng Part C Methods; 2014 Jan; 20(1):52-63. PubMed ID: 23672760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional properties of cartilaginous tissues engineered from infrapatellar fat pad-derived mesenchymal stem cells.
    Buckley CT; Vinardell T; Thorpe SD; Haugh MG; Jones E; McGonagle D; Kelly DJ
    J Biomech; 2010 Mar; 43(5):920-6. PubMed ID: 20005518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.