BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 22443301)

  • 1. Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations.
    Bouchard D; Zhang W; Powell T; Rattanaudompol US
    Environ Sci Technol; 2012 Apr; 46(8):4458-65. PubMed ID: 22443301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study.
    Lin S; Blankschtein D
    J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media.
    Tian Y; Gao B; Morales VL; Wang Y; Wu L
    J Hazard Mater; 2012 Nov; 239-240():333-9. PubMed ID: 23009789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surfactant and boron doping on the BWF feature in the Raman spectrum of single-wall carbon nanotube aqueous dispersions.
    Blackburn JL; Engtrakul C; McDonald TJ; Dillon AC; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25551-8. PubMed ID: 17166007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the initial state of carbon nanotubes on their colloidal stability under natural conditions.
    Schwyzer I; Kaegi R; Sigg L; Magrez A; Nowack B
    Environ Pollut; 2011 Jun; 159(6):1641-8. PubMed ID: 21435759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions.
    McDonald TJ; Engtrakul C; Jones M; Rumbles G; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25339-46. PubMed ID: 17165980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of aqueous carbon nanotube dispersions using surfactants: insights from molecular dynamics simulations.
    Tummala NR; Morrow BH; Resasco DE; Striolo A
    ACS Nano; 2010 Dec; 4(12):7193-204. PubMed ID: 21128672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes.
    Saleh NB; Pfefferle LD; Elimelech M
    Environ Sci Technol; 2010 Apr; 44(7):2412-8. PubMed ID: 20184360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diameter-dependent solubility of single-walled carbon nanotubes.
    Duque JG; Parra-Vasquez AN; Behabtu N; Green MJ; Higginbotham AL; Price BK; Leonard AD; Schmidt HK; Lounis B; Tour JM; Doorn SK; Cognet L; Pasquali M
    ACS Nano; 2010 Jun; 4(6):3063-72. PubMed ID: 20521799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of carbon nanotube dispersion using surfactants.
    Rastogi R; Kaushal R; Tripathi SK; Sharma AL; Kaur I; Bharadwaj LM
    J Colloid Interface Sci; 2008 Dec; 328(2):421-8. PubMed ID: 18848704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swelling the hydrophobic core of surfactant-suspended single-walled carbon nanotubes: a SANS study.
    Silvera-Batista CA; Ziegler KJ
    Langmuir; 2011 Sep; 27(18):11372-80. PubMed ID: 21793553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable luminescence from individual carbon nanotubes in acidic, basic, and biological environments.
    Duque JG; Cognet L; Parra-Vasquez AN; Nicholas N; Schmidt HK; Pasquali M
    J Am Chem Soc; 2008 Feb; 130(8):2626-33. PubMed ID: 18237169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of ciprofloxacin from aqueous solutions by ionic surfactant-modified carbon nanotubes.
    Li H; Wu W; Hao X; Wang S; You M; Han X; Zhao Q; Xing B
    Environ Pollut; 2018 Dec; 243(Pt A):206-217. PubMed ID: 30172990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata.
    Youn S; Wang R; Gao J; Hovespyan A; Ziegler KJ; Bonzongo JC; Bitton G
    Nanotoxicology; 2012 Mar; 6(2):161-72. PubMed ID: 21417553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-Wrapped Multiwalled Carbon Nanotubes in Aquatic Systems: Surfactant Displacement in the Presence of Humic Acid.
    Chang X; Bouchard DC
    Environ Sci Technol; 2016 Sep; 50(17):9214-22. PubMed ID: 27500910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions.
    Fu Q; Liu J
    Langmuir; 2005 Feb; 21(4):1162-5. PubMed ID: 15697254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of carbon nanotubes in aqueous medium by capillary electrophoresis.
    Suárez B; Simonet BM; Cárdenas S; Valcárcel M
    J Chromatogr A; 2006 Sep; 1128(1-2):282-9. PubMed ID: 16842803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ionic surfactants on the flocculation and sorption of palladium and mercury in the aquatic environment.
    Turner A; Xu J
    Water Res; 2008 Jan; 42(1-2):318-26. PubMed ID: 17706263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining precision spin-probe partitioning with time-resolved fluorescence quenching to study micelles. Application to micelles of pure lysomyristoylphosphatidylcholine (LMPC) and LMPC mixed with sodium dodecyl sulfate.
    Peric M; Alves M; Bales BL
    Chem Phys Lipids; 2006 Jul; 142(1-2):1-13. PubMed ID: 16569402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term improvements to photoluminescence and dispersion stability by flowing SDS-SWNT suspensions through microfluidic channels.
    Silvera-Batista CA; Weinberg P; Butler JE; Ziegler KJ
    J Am Chem Soc; 2009 Sep; 131(35):12721-8. PubMed ID: 19678679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.