These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22443315)

  • 1. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity.
    Kang HW; Cho DW
    Tissue Eng Part C Methods; 2012 Sep; 18(9):719-29. PubMed ID: 22443315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods.
    Ho MH; Kuo PY; Hsieh HJ; Hsien TY; Hou LT; Lai JY; Wang DM
    Biomaterials; 2004 Jan; 25(1):129-38. PubMed ID: 14580916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
    Ko HF; Sfeir C; Kumta PN
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.
    Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C
    Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly (L-lactic acid) porous scaffold-supported alginate hydrogel with improved mechanical properties and biocompatibility.
    Chu J; Zeng S; Gao L; Groth T; Li Z; Kong J; Zhao M; Li L
    Int J Artif Organs; 2016 Oct; 39(8):435-443. PubMed ID: 27646631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering.
    Sajesh KM; Jayakumar R; Nair SV; Chennazhi KP
    Int J Biol Macromol; 2013 Nov; 62():465-71. PubMed ID: 24080452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles.
    Yu G; Fan Y
    J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds.
    Liu L; Xiong Z; Yan Y; Zhang R; Wang X; Jin L
    J Biomed Mater Res B Appl Biomater; 2009 Jan; 88(1):254-63. PubMed ID: 18698625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering.
    Cornock R; Beirne S; Thompson B; Wallace GG
    Biofabrication; 2014 Jun; 6(2):025002. PubMed ID: 24658021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.
    Kumbhar SG; Pawar SH
    Biomed Mater Eng; 2016; 27(6):561-575. PubMed ID: 28234241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sacrificial biomaterials in 3D fabrication of scaffolds for tissue engineering applications.
    Wang C; Zhou Y
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35312. PubMed ID: 37572033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications.
    Saito E; Kang H; Taboas JM; Diggs A; Flanagan CL; Hollister SJ
    J Mater Sci Mater Med; 2010 Aug; 21(8):2371-83. PubMed ID: 20524047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds.
    Saito E; Liu Y; Migneco F; Hollister SJ
    Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering.
    Wang X; Wenk E; Zhang X; Meinel L; Vunjak-Novakovic G; Kaplan DL
    J Control Release; 2009 Mar; 134(2):81-90. PubMed ID: 19071168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of keratin/alginate scaffold using RSM and its characterization for tissue engineering.
    Gupta P; Nayak KK
    Int J Biol Macromol; 2016 Apr; 85():141-9. PubMed ID: 26691383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.