BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22443410)

  • 21. Template-primer binding affinity and RNase H cleavage specificity contribute to the strand transfer efficiency of HIV-1 reverse transcriptase.
    Luczkowiak J; Matamoros T; Menéndez-Arias L
    J Biol Chem; 2018 Aug; 293(35):13351-13363. PubMed ID: 29991591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of methionine 184 of human immunodeficiency virus type-1 reverse transcriptase in the polymerase function and fidelity of DNA synthesis.
    Pandey VN; Kaushik N; Rege N; Sarafianos SG; Yadav PN; Modak MJ
    Biochemistry; 1996 Feb; 35(7):2168-79. PubMed ID: 8652558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative analysis of the interactions between HIV-1 integrase and retroviral reverse transcriptases.
    Herschhorn A; Oz-Gleenberg I; Hizi A
    Biochem J; 2008 May; 412(1):163-70. PubMed ID: 18260826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-linking of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase to template-primer.
    Peletskaya EN; Boyer PL; Kogon AA; Clark P; Kroth H; Sayer JM; Jerina DM; Hughes SH
    J Virol; 2001 Oct; 75(19):9435-45. PubMed ID: 11533206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of DNA polymerase activities between recombinant feline immunodeficiency and leukemia virus reverse transcriptases.
    Operario DJ; Reynolds HM; Kim B
    Virology; 2005 Apr; 335(1):106-21. PubMed ID: 15823610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro analysis of human immunodeficiency virus type 1 minus-strand strong-stop DNA synthesis and genomic RNA processing.
    Driscoll MD; Golinelli MP; Hughes SH
    J Virol; 2001 Jan; 75(2):672-86. PubMed ID: 11134281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retroviral reverse transcriptases (other than those of HIV-1 and murine leukemia virus): a comparison of their molecular and biochemical properties.
    Hizi A; Herschhorn A
    Virus Res; 2008 Jun; 134(1-2):203-20. PubMed ID: 18291546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Template-switching mechanism of a group II intron-encoded reverse transcriptase and its implications for biological function and RNA-Seq.
    Lentzsch AM; Yao J; Russell R; Lambowitz AM
    J Biol Chem; 2019 Dec; 294(51):19764-19784. PubMed ID: 31712313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of strand displacement synthesis by Moloney murine leukemia virus reverse transcriptase: mechanistic implications.
    Whiting SH; Champoux JJ
    J Mol Biol; 1998 May; 278(3):559-77. PubMed ID: 9600839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein on HIV-1 reverse transcriptase activity in vitro.
    Ji X; Klarmann GJ; Preston BD
    Biochemistry; 1996 Jan; 35(1):132-43. PubMed ID: 8555166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Y586F mutation in murine leukemia virus reverse transcriptase decreases fidelity of DNA synthesis in regions associated with adenine-thymine tracts.
    Zhang WH; Svarovskaia ES; Barr R; Pathak VK
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):10090-5. PubMed ID: 12119402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific recognition and cleavage of the plus-strand primer by reverse transcriptase.
    Atwood-Moore A; Ejebe K; Levin HL
    J Virol; 2005 Dec; 79(23):14863-75. PubMed ID: 16282486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for template switching by a group II intron-encoded non-LTR-retroelement reverse transcriptase.
    Lentzsch AM; Stamos JL; Yao J; Russell R; Lambowitz AM
    J Biol Chem; 2021 Aug; 297(2):100971. PubMed ID: 34280434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Marked infidelity of human immunodeficiency virus type 1 reverse transcriptase at RNA and DNA template ends.
    Patel PH; Preston BD
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):549-53. PubMed ID: 7507249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases.
    Sebastián-Martín A; Barrioluengo V; Menéndez-Arias L
    Sci Rep; 2018 Jan; 8(1):627. PubMed ID: 29330371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The reverse transcriptase of the Tf1 retrotransposon has a specific novel activity for generating the RNA self-primer that is functional in cDNA synthesis.
    Hizi A
    J Virol; 2008 Nov; 82(21):10906-10. PubMed ID: 18753200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates.
    Bibiłło A; Eickbush TH
    J Mol Biol; 2002 Feb; 316(3):459-73. PubMed ID: 11866511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of the Ty3 reverse transcriptase thumb subdomain with template-primer.
    Bibillo A; Lener D; Tewari A; Le Grice SF
    J Biol Chem; 2005 Aug; 280(34):30282-90. PubMed ID: 15944162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reverse transcription of retroviruses and LTR retrotransposons.
    Wilhelm M; Wilhelm FX
    Cell Mol Life Sci; 2001 Aug; 58(9):1246-62. PubMed ID: 11577982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of template-primer in protection of reverse transcriptase from thermal inactivation.
    Gerard GF; Potter RJ; Smith MD; Rosenthal K; Dhariwal G; Lee J; Chatterjee DK
    Nucleic Acids Res; 2002 Jul; 30(14):3118-29. PubMed ID: 12136094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.