These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 22443591)
61. Probiotic dosing of Ruminococcus flavefaciens affects rumen microbiome structure and function in reindeer. Præsteng KE; Pope PB; Cann IK; Mackie RI; Mathiesen SD; Folkow LP; Eijsink VG; Sundset MA Microb Ecol; 2013 Nov; 66(4):840-9. PubMed ID: 23959114 [TBL] [Abstract][Full Text] [Related]
62. Influence of sire breed on the interplay among rumen microbial populations inhabiting the rumen liquid of the progeny in beef cattle. Hernandez-Sanabria E; Goonewardene LA; Wang Z; Zhou M; Moore SS; Guan LL PLoS One; 2013; 8(3):e58461. PubMed ID: 23520513 [TBL] [Abstract][Full Text] [Related]
63. Metagenomic analysis reveals a functional signature for biomass degradation by cecal microbiota in the leaf-eating flying squirrel (Petaurista alborufus lena). Lu HP; Wang YB; Huang SW; Lin CY; Wu M; Hsieh CH; Yu HT BMC Genomics; 2012 Sep; 13():466. PubMed ID: 22963241 [TBL] [Abstract][Full Text] [Related]
64. Effect of environmental factors and influence of rumen and hindgut biogeography on bacterial communities in steers. Romero-Pérez GA; Ominski KH; McAllister TA; Krause DO Appl Environ Microbiol; 2011 Jan; 77(1):258-68. PubMed ID: 21075877 [TBL] [Abstract][Full Text] [Related]
65. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Lourenço M; Ramos-Morales E; Wallace RJ Animal; 2010 Jul; 4(7):1008-23. PubMed ID: 22444606 [TBL] [Abstract][Full Text] [Related]
66. Isolation and characterization of mimosine, 3, 4 DHP and 2, 3 DHP degrading bacteria from a commercial rumen inoculum. Derakhshani H; Corley SW; Al Jassim R J Basic Microbiol; 2016 May; 56(5):580-5. PubMed ID: 26773324 [TBL] [Abstract][Full Text] [Related]
67. [Rumen bacteria degrading toxic mimosine and dihydroxypyridine compounds in China]. Tan P; Wang X; Wang J Wei Sheng Wu Xue Bao; 1994 Oct; 34(5):379-84. PubMed ID: 7871781 [TBL] [Abstract][Full Text] [Related]
68. Gut microbiology - broad genetic diversity, yet specific metabolic niches. John Wallace R Animal; 2008 May; 2(5):661-8. PubMed ID: 22443591 [TBL] [Abstract][Full Text] [Related]
69. Leucaena toxicosis and its control in ruminants. Hammond AC J Anim Sci; 1995 May; 73(5):1487-92. PubMed ID: 7665380 [TBL] [Abstract][Full Text] [Related]
70. Microbial fatty acid conversion within the rumen and the subsequent utilization of these fatty acids to improve the healthfulness of ruminant food products. Or-Rashid MM; Wright TC; McBride BW Appl Microbiol Biotechnol; 2009 Oct; 84(6):1033-43. PubMed ID: 19685048 [TBL] [Abstract][Full Text] [Related]
72. Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. Hespell RB; Whitehead TR J Dairy Sci; 1990 Oct; 73(10):3013-22. PubMed ID: 2283426 [TBL] [Abstract][Full Text] [Related]
73. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Xu J Mol Ecol; 2006 Jun; 15(7):1713-31. PubMed ID: 16689892 [TBL] [Abstract][Full Text] [Related]