These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
505 related articles for article (PubMed ID: 22443635)
1. Optimizing solute-water van der Waals interactions to reproduce solvation free energies. Nerenberg PS; Jo B; So C; Tripathy A; Head-Gordon T J Phys Chem B; 2012 Apr; 116(15):4524-34. PubMed ID: 22443635 [TBL] [Abstract][Full Text] [Related]
2. New approach to free energy of solvation applying continuum models to molecular dynamics simulation. Gonçalves PF; Stassen H J Comput Chem; 2002 May; 23(7):706-14. PubMed ID: 11948588 [TBL] [Abstract][Full Text] [Related]
3. Metadynamics as a tool for mapping the conformational and free-energy space of peptides--the alanine dipeptide case study. Vymetal J; Vondrásek J J Phys Chem B; 2010 Apr; 114(16):5632-42. PubMed ID: 20361773 [TBL] [Abstract][Full Text] [Related]
4. Update to the general amber force field for small solutes with an emphasis on free energies of hydration. Jämbeck JP; Lyubartsev AP J Phys Chem B; 2014 Apr; 118(14):3793-804. PubMed ID: 24684585 [TBL] [Abstract][Full Text] [Related]
5. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins. Yamazaki T; Kovalenko A J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382 [TBL] [Abstract][Full Text] [Related]
6. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation. Goncalves PF; Stassen H J Chem Phys; 2005 Dec; 123(21):214109. PubMed ID: 16356041 [TBL] [Abstract][Full Text] [Related]
7. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy. Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735 [TBL] [Abstract][Full Text] [Related]
8. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model. Vorobjev YN; Almagro JC; Hermans J Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412 [TBL] [Abstract][Full Text] [Related]
9. Free energy determinants of secondary structure formation: I. alpha-Helices. Yang AS; Honig B J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056 [TBL] [Abstract][Full Text] [Related]
10. Development of a methodology to compute solvation free energies on the basis of the theory of energy representation for solutions represented with a polarizable force field. Suzuoka D; Takahashi H; Ishiyama T; Morita A J Chem Phys; 2012 Dec; 137(21):214503. PubMed ID: 23231247 [TBL] [Abstract][Full Text] [Related]
11. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters. Geerke DP; van Gunsteren WF J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737 [TBL] [Abstract][Full Text] [Related]
12. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. Shirts MR; Pande VS J Chem Phys; 2005 Apr; 122(13):134508. PubMed ID: 15847482 [TBL] [Abstract][Full Text] [Related]
13. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model. Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052 [TBL] [Abstract][Full Text] [Related]
14. Free energy of solvation from molecular dynamics simulations for low dielectric solvents. Gonçalves PF; Stassen H J Comput Chem; 2003 Nov; 24(14):1758-65. PubMed ID: 12964194 [TBL] [Abstract][Full Text] [Related]
15. Influence of water-protein hydrogen bonding on the stability of Trp-cage miniprotein. A comparison between the TIP3P and TIP4P-Ew water models. Paschek D; Day R; García AE Phys Chem Chem Phys; 2011 Nov; 13(44):19840-7. PubMed ID: 21845272 [TBL] [Abstract][Full Text] [Related]
16. The non-polar solvent potential of mean force for the dimerization of alanine dipeptide: the role of solute-solvent van der Waals interactions. Su Y; Gallicchio E Biophys Chem; 2004 May; 109(2):251-60. PubMed ID: 15110943 [TBL] [Abstract][Full Text] [Related]
17. Multicanonical ab inito QM/MM molecular dynamics simulation of a peptide in an aqueous environment. Jono R; Watanabe Y; Shimizu K; Terada T J Comput Chem; 2010 Apr; 31(6):1168-75. PubMed ID: 19847783 [TBL] [Abstract][Full Text] [Related]
18. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. Mobley DL; Dumont E; Chodera JD; Dill KA J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029 [TBL] [Abstract][Full Text] [Related]
19. Optimizing Protein-Solvent Force Fields to Reproduce Intrinsic Conformational Preferences of Model Peptides. Nerenberg PS; Head-Gordon T J Chem Theory Comput; 2011 Apr; 7(4):1220-30. PubMed ID: 26606367 [TBL] [Abstract][Full Text] [Related]
20. Comparison of two simulation methods to compute solvation free energies and partition coefficients. Yang L; Ahmed A; Sandler SI J Comput Chem; 2013 Feb; 34(4):284-93. PubMed ID: 23109246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]