These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22443741)

  • 1. Communication: impact of inertia on biased Brownian transport in confined geometries.
    Martens S; Sokolov IM; Schimansky-Geier L
    J Chem Phys; 2012 Mar; 136(11):111102. PubMed ID: 22443741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropic particle transport in periodic channels.
    Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM
    Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion in one-dimensional channels with zero-mean time-periodic tilting forces.
    Muñoz-Gutiérrez E; Alvarez-Ramirez J; Dagdug L; Espinosa-Paredes G
    J Chem Phys; 2012 Mar; 136(11):114103. PubMed ID: 22443745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropic transport of finite size particles.
    Riefler W; Schmid G; Burada PS; Hänggi P
    J Phys Condens Matter; 2010 Nov; 22(45):454109. PubMed ID: 21339597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion in confined geometries.
    Burada PS; Hänggi P; Marchesoni F; Schmid G; Talkner P
    Chemphyschem; 2009 Jan; 10(1):45-54. PubMed ID: 19025741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of finite size particles in confined narrow channels: diffusion, coherence, and particle separation.
    Ai BQ; Wu JC
    J Chem Phys; 2013 Jul; 139(3):034114. PubMed ID: 23883017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian escape and force-driven transport through entropic barriers: Particle size effect.
    Cheng KL; Sheng YJ; Tsao HK
    J Chem Phys; 2008 Nov; 129(18):184901. PubMed ID: 19045425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of Brownian particles in a narrow, slowly varying serpentine channel.
    Wang X; Drazer G
    J Chem Phys; 2015 Apr; 142(15):154114. PubMed ID: 25903873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entropic transport: a test bed for the Fick-Jacobs approximation.
    Burada PS; Schmid G; Hänggi P
    Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3157-71. PubMed ID: 19620115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion in two-dimensional conical varying width channels: comparison of analytical and numerical results.
    Pineda I; Alvarez-Ramirez J; Dagdug L
    J Chem Phys; 2012 Nov; 137(17):174103. PubMed ID: 23145713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-passage times in conical varying-width channels biased by a transverse gravitational force: Comparison of analytical and numerical results.
    Pompa-García I; Castilla R; Metzler R; Dagdug L
    Phys Rev E; 2022 Dec; 106(6-1):064137. PubMed ID: 36671151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.
    Yariv E; Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids.
    Sanz E; Marenduzzo D
    J Chem Phys; 2010 May; 132(19):194102. PubMed ID: 20499946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.
    Berk Usta O; Ladd AJ; Butler JE
    J Chem Phys; 2005 Mar; 122(9):094902. PubMed ID: 15836176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of a heated granular gas in a washboard potential.
    Costantini G; Cecconi F; Marini-Bettolo-Marconi U
    J Chem Phys; 2006 Nov; 125(20):204711. PubMed ID: 17144727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biased diffusion in confined media: test of the Fick-Jacobs approximation and validity criteria.
    Burada PS; Schmid G; Reguera D; Rubí JM; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051111. PubMed ID: 17677026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biased diffusion in tubes of alternating diameter: analytical treatment in the case of strong bias.
    Zitserman VY; Berezhkovskii AM; Antipov AE; Makhnovskii YA
    J Chem Phys; 2014 Dec; 141(21):214103. PubMed ID: 25481125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biased Brownian motion in extremely corrugated tubes.
    Martens S; Schmid G; Schimansky-Geier L; Hänggi P
    Chaos; 2011 Dec; 21(4):047518. PubMed ID: 22225392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steering the potential barriers: entropic to energetic.
    Burada PS; Schmid G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051128. PubMed ID: 21230458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional Brownian diffusion of rod-like macromolecules in the presence of randomly distributed spherical obstacles: molecular dynamics simulation.
    Sakha F; Fazli H
    J Chem Phys; 2010 Dec; 133(23):234904. PubMed ID: 21186888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.