These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice. Boles MA; Talapin DV ACS Nano; 2019 May; 13(5):5375-5384. PubMed ID: 31017762 [TBL] [Abstract][Full Text] [Related]
5. Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand. Munro AM; Zacher B; Graham A; Armstrong NR ACS Appl Mater Interfaces; 2010 Mar; 2(3):863-9. PubMed ID: 20356292 [TBL] [Abstract][Full Text] [Related]
6. A coarse-grained simulation for tensile behavior of 2D Au nanocrystal superlattices. Liu XP; Ni Y; He LH Nanotechnology; 2014 Nov; 25(47):475704. PubMed ID: 25379687 [TBL] [Abstract][Full Text] [Related]
7. Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. Fafarman AT; Koh WK; Diroll BT; Kim DK; Ko DK; Oh SJ; Ye X; Doan-Nguyen V; Crump MR; Reifsnyder DC; Murray CB; Kagan CR J Am Chem Soc; 2011 Oct; 133(39):15753-61. PubMed ID: 21848336 [TBL] [Abstract][Full Text] [Related]
10. Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate). Chen C; Depa P; Maranas JK; Garcia Sakai V J Chem Phys; 2008 Mar; 128(12):124906. PubMed ID: 18376972 [TBL] [Abstract][Full Text] [Related]
11. A comparison of united atom, explicit atom, and coarse-grained simulation models for poly(ethylene oxide). Chen C; Depa P; Sakai VG; Maranas JK; Lynn JW; Peral I; Copley JR J Chem Phys; 2006 Jun; 124(23):234901. PubMed ID: 16821947 [TBL] [Abstract][Full Text] [Related]
12. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide. Avendaño C; Lafitte T; Galindo A; Adjiman CS; Jackson G; Müller EA J Phys Chem B; 2011 Sep; 115(38):11154-69. PubMed ID: 21815624 [TBL] [Abstract][Full Text] [Related]
13. Modeling diffusive dynamics in adaptive resolution simulation of liquid water. Matysiak S; Clementi C; Praprotnik M; Kremer K; Delle Site L J Chem Phys; 2008 Jan; 128(2):024503. PubMed ID: 18205455 [TBL] [Abstract][Full Text] [Related]
14. Surface functionalization of semiconductor and oxide nanocrystals with small inorganic oxoanions (PO4(3-), MoO4(2-)) and polyoxometalate ligands. Huang J; Liu W; Dolzhnikov DS; Protesescu L; Kovalenko MV; Koo B; Chattopadhyay S; Shenchenko EV; Talapin DV ACS Nano; 2014 Sep; 8(9):9388-402. PubMed ID: 25181260 [TBL] [Abstract][Full Text] [Related]
15. Ligand Effects in Assembly of Cubic and Spherical Nanocrystals: Applications to Packing of Perovskite Nanocubes. Hallstrom J; Cherniukh I; Zha X; Kovalenko MV; Travesset A ACS Nano; 2023 Apr; 17(8):7219-7228. PubMed ID: 37040619 [TBL] [Abstract][Full Text] [Related]
16. Nanocrystal superlattices with thermally degradable hybrid inorganic-organic capping ligands. Kovalenko MV; Bodnarchuk MI; Talapin DV J Am Chem Soc; 2010 Nov; 132(43):15124-6. PubMed ID: 20936872 [TBL] [Abstract][Full Text] [Related]
17. Facile assembly of size- and shape-tunable IV-VI nanocrystals into superlattices. Wang Y; Dai Q; Zou B; Yu WW; Liu B; Zou G Langmuir; 2010 Dec; 26(24):19129-35. PubMed ID: 21117614 [TBL] [Abstract][Full Text] [Related]
19. Molecular interaction between asymmetric ligand-capped gold nanocrystals. Liu X; Lu P; Zhai H J Chem Phys; 2019 Jan; 150(3):034702. PubMed ID: 30660164 [TBL] [Abstract][Full Text] [Related]
20. Orientational Order in Self-Assembled Nanocrystal Superlattices. Fan Z; Grünwald M J Am Chem Soc; 2019 Feb; 141(5):1980-1988. PubMed ID: 30628775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]