These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22443785)

  • 1. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals.
    Kaushik AP; Clancy P
    J Chem Phys; 2012 Mar; 136(11):114702. PubMed ID: 22443785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding interactions between capped nanocrystals: three-body and chain packing effects.
    Schapotschnikow P; Vlugt TJ
    J Chem Phys; 2009 Sep; 131(12):124705. PubMed ID: 19791910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent-driven symmetry of self-assembled nanocrystal superlattices--a computational study.
    Kaushik AP; Clancy P
    J Comput Chem; 2013 Mar; 34(7):523-32. PubMed ID: 23109263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice.
    Boles MA; Talapin DV
    ACS Nano; 2019 May; 13(5):5375-5384. PubMed ID: 31017762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand.
    Munro AM; Zacher B; Graham A; Armstrong NR
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):863-9. PubMed ID: 20356292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coarse-grained simulation for tensile behavior of 2D Au nanocrystal superlattices.
    Liu XP; Ni Y; He LH
    Nanotechnology; 2014 Nov; 25(47):475704. PubMed ID: 25379687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids.
    Fafarman AT; Koh WK; Diroll BT; Kim DK; Ko DK; Oh SJ; Ye X; Doan-Nguyen V; Crump MR; Reifsnyder DC; Murray CB; Kagan CR
    J Am Chem Soc; 2011 Oct; 133(39):15753-61. PubMed ID: 21848336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage.
    Choi JJ; Bealing CR; Bian K; Hughes KJ; Zhang W; Smilgies DM; Hennig RG; Engstrom JR; Hanrath T
    J Am Chem Soc; 2011 Mar; 133(9):3131-8. PubMed ID: 21306161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs.
    Bian K; Choi JJ; Kaushik A; Clancy P; Smilgies DM; Hanrath T
    ACS Nano; 2011 Apr; 5(4):2815-23. PubMed ID: 21344877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate).
    Chen C; Depa P; Maranas JK; Garcia Sakai V
    J Chem Phys; 2008 Mar; 128(12):124906. PubMed ID: 18376972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of united atom, explicit atom, and coarse-grained simulation models for poly(ethylene oxide).
    Chen C; Depa P; Sakai VG; Maranas JK; Lynn JW; Peral I; Copley JR
    J Chem Phys; 2006 Jun; 124(23):234901. PubMed ID: 16821947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide.
    Avendaño C; Lafitte T; Galindo A; Adjiman CS; Jackson G; Müller EA
    J Phys Chem B; 2011 Sep; 115(38):11154-69. PubMed ID: 21815624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling diffusive dynamics in adaptive resolution simulation of liquid water.
    Matysiak S; Clementi C; Praprotnik M; Kremer K; Delle Site L
    J Chem Phys; 2008 Jan; 128(2):024503. PubMed ID: 18205455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface functionalization of semiconductor and oxide nanocrystals with small inorganic oxoanions (PO4(3-), MoO4(2-)) and polyoxometalate ligands.
    Huang J; Liu W; Dolzhnikov DS; Protesescu L; Kovalenko MV; Koo B; Chattopadhyay S; Shenchenko EV; Talapin DV
    ACS Nano; 2014 Sep; 8(9):9388-402. PubMed ID: 25181260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand Effects in Assembly of Cubic and Spherical Nanocrystals: Applications to Packing of Perovskite Nanocubes.
    Hallstrom J; Cherniukh I; Zha X; Kovalenko MV; Travesset A
    ACS Nano; 2023 Apr; 17(8):7219-7228. PubMed ID: 37040619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocrystal superlattices with thermally degradable hybrid inorganic-organic capping ligands.
    Kovalenko MV; Bodnarchuk MI; Talapin DV
    J Am Chem Soc; 2010 Nov; 132(43):15124-6. PubMed ID: 20936872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile assembly of size- and shape-tunable IV-VI nanocrystals into superlattices.
    Wang Y; Dai Q; Zou B; Yu WW; Liu B; Zou G
    Langmuir; 2010 Dec; 26(24):19129-35. PubMed ID: 21117614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing functional mesostructured materials from colloidal nanocrystal building blocks.
    Milliron DJ; Buonsanti R; Llordes A; Helms BA
    Acc Chem Res; 2014 Jan; 47(1):236-46. PubMed ID: 24004254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular interaction between asymmetric ligand-capped gold nanocrystals.
    Liu X; Lu P; Zhai H
    J Chem Phys; 2019 Jan; 150(3):034702. PubMed ID: 30660164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientational Order in Self-Assembled Nanocrystal Superlattices.
    Fan Z; Grünwald M
    J Am Chem Soc; 2019 Feb; 141(5):1980-1988. PubMed ID: 30628775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.