These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. High-resolution imaging of remanent state and magnetization reversal of superdomain structures in high-density cobalt antidot arrays. Rodríguez LA; Magén C; Snoeck E; Gatel C; Castán-Guerrero C; Sesé J; García LM; Herrero-Albillos J; Bartolomé J; Bartolomé F; Ibarra MR Nanotechnology; 2014 Sep; 25(38):385703. PubMed ID: 25181396 [TBL] [Abstract][Full Text] [Related]
7. Spin-wave dynamics in perpendicularly magnetized antidot multilayers. De A; Pal S; Hellwig O; Barman A J Phys Condens Matter; 2024 Jul; 36(41):. PubMed ID: 38955338 [TBL] [Abstract][Full Text] [Related]
8. Antidot patterned single and bilayer thin films based on ferrimagnetic Tb-Co alloy with perpendicular magnetic anisotropy. Kulesh NA; Vázquez M; Lepalovskij VN; Vas'kovskiy VO Nanotechnology; 2018 Feb; 29(6):065301. PubMed ID: 29256448 [TBL] [Abstract][Full Text] [Related]
10. Programmability of Co-antidot lattices of optimized geometry. Schneider T; Langer M; Alekhina J; Kowalska E; Oelschlägel A; Semisalova A; Neudert A; Lenz K; Potzger K; Kostylev MP; Fassbender J; Adeyeye AO; Lindner J; Bali R Sci Rep; 2017 Feb; 7():41157. PubMed ID: 28145463 [TBL] [Abstract][Full Text] [Related]
11. Switching modes in easy and hard axis magnetic reversal in a self-assembled antidot array. Haering F; Wiedwald U; Nothelfer S; Koslowski B; Ziemann P; Lechner L; Wallucks A; Lebecki K; Nowak U; Gräfe J; Goering E; Schütz G Nanotechnology; 2013 Nov; 24(46):465709. PubMed ID: 24172909 [TBL] [Abstract][Full Text] [Related]
12. The role of non-uniform magnetization texture for magnon-magnon coupling in an antidot lattice. Moalic M; Zelent M; Szulc K; Krawczyk M Sci Rep; 2024 May; 14(1):11501. PubMed ID: 38769393 [TBL] [Abstract][Full Text] [Related]
13. Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties. Cupo A; Masih Das P; Chien CC; Danda G; Kharche N; Tristant D; Drndić M; Meunier V ACS Nano; 2017 Jul; 11(7):7494-7507. PubMed ID: 28666086 [TBL] [Abstract][Full Text] [Related]
15. Magnetic antidot nanostructures: effect of lattice geometry. Wang CC; Adeyeye AO; Singh N Nanotechnology; 2006 Mar; 17(6):1629-36. PubMed ID: 26558569 [TBL] [Abstract][Full Text] [Related]
16. Magnetic switching of nanoscale antidot lattices. Wiedwald U; Gräfe J; Lebecki KM; Skripnik M; Haering F; Schütz G; Ziemann P; Goering E; Nowak U Beilstein J Nanotechnol; 2016; 7():733-50. PubMed ID: 27335762 [TBL] [Abstract][Full Text] [Related]
17. Universal dependence of the spin wave band structure on the geometrical characteristics of two-dimensional magnonic crystals. Tacchi S; Gruszecki P; Madami M; Carlotti G; Kłos JW; Krawczyk M; Adeyeye A; Gubbiotti G Sci Rep; 2015 May; 5():10367. PubMed ID: 26012863 [TBL] [Abstract][Full Text] [Related]
18. Clar sextet analysis of triangular, rectangular, and honeycomb graphene antidot lattices. Petersen R; Pedersen TG; Jauho AP ACS Nano; 2011 Jan; 5(1):523-9. PubMed ID: 21158482 [TBL] [Abstract][Full Text] [Related]
19. Recursive evolution of spin-wave multiplets in magnonic crystals of antidot-lattice fractals. Park G; Yang J; Kim SK Sci Rep; 2021 Nov; 11(1):22604. PubMed ID: 34799564 [TBL] [Abstract][Full Text] [Related]
20. Relaxation dynamics in magnetic antidot lattice arrays of Co/Pt with perpendicular anisotropy. Mallick S; Mishra SS; Bedanta S Sci Rep; 2018 Aug; 8(1):11648. PubMed ID: 30076381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]