These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22444074)

  • 21. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts.
    Chen T; Ryali S; Qin S; Menon V
    Neuroimage; 2013 Nov; 82():87-100. PubMed ID: 23747287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI.
    Hiltunen T; Kantola J; Abou Elseoud A; Lepola P; Suominen K; Starck T; Nikkinen J; Remes J; Tervonen O; Palva S; Kiviniemi V; Palva JM
    J Neurosci; 2014 Jan; 34(2):356-62. PubMed ID: 24403137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A method to determine the necessity for global signal regression in resting-state fMRI studies.
    Chen G; Chen G; Xie C; Ward BD; Li W; Antuono P; Li SJ
    Magn Reson Med; 2012 Dec; 68(6):1828-35. PubMed ID: 22334332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of respiration variations on independent component analysis results of resting state functional connectivity.
    Birn RM; Murphy K; Bandettini PA
    Hum Brain Mapp; 2008 Jul; 29(7):740-50. PubMed ID: 18438886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures.
    Wong CW; Olafsson V; Tal O; Liu TT
    Neuroimage; 2013 Dec; 83():983-90. PubMed ID: 23899724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Template-based prediction of vigilance fluctuations in resting-state fMRI.
    Falahpour M; Chang C; Wong CW; Liu TT
    Neuroimage; 2018 Jul; 174():317-327. PubMed ID: 29548849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stationary EEG pattern relates to large-scale resting state networks - An EEG-fMRI study connecting brain networks across time-scales.
    Daniel Arzate-Mena J; Abela E; Olguín-Rodríguez PV; Ríos-Herrera W; Alcauter S; Schindler K; Wiest R; Müller MF; Rummel C
    Neuroimage; 2022 Feb; 246():118763. PubMed ID: 34863961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain.
    Sforazzini F; Schwarz AJ; Galbusera A; Bifone A; Gozzi A
    Neuroimage; 2014 Feb; 87():403-15. PubMed ID: 24080504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A linear/nonlinear characterization of resting state brain networks in FMRI time series.
    Gultepe E; He B
    Brain Topogr; 2013 Jan; 26(1):39-49. PubMed ID: 22941499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI.
    Almgren H; Van de Steen F; Razi A; Friston K; Marinazzo D
    Neuroimage; 2020 Mar; 208():116435. PubMed ID: 31816423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data.
    Mahadevan AS; Tooley UA; Bertolero MA; Mackey AP; Bassett DS
    Neuroimage; 2021 Nov; 241():118408. PubMed ID: 34284108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time scale properties of task and resting-state functional connectivity: Detrended partial cross-correlation analysis.
    Ide JS; Li CR
    Neuroimage; 2018 Jun; 173():240-248. PubMed ID: 29454934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subspace-based Identification Algorithm for characterizing causal networks in resting brain.
    Kadkhodaeian Bakhtiari S; Hossein-Zadeh GA
    Neuroimage; 2012 Apr; 60(2):1236-49. PubMed ID: 22245346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resting-state functional connectivity reflects structural connectivity in the default mode network.
    Greicius MD; Supekar K; Menon V; Dougherty RF
    Cereb Cortex; 2009 Jan; 19(1):72-8. PubMed ID: 18403396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-state fMRI networks.
    Di X; Biswal BB;
    Brain Connect; 2012; 2(5):275-83. PubMed ID: 23025619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the detection of high frequency correlations in resting state fMRI.
    Trapp C; Vakamudi K; Posse S
    Neuroimage; 2018 Jan; 164():202-213. PubMed ID: 28163143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On spurious and real fluctuations of dynamic functional connectivity during rest.
    Leonardi N; Van De Ville D
    Neuroimage; 2015 Jan; 104():430-6. PubMed ID: 25234118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic effective connectivity in resting state fMRI.
    Park HJ; Friston KJ; Pae C; Park B; Razi A
    Neuroimage; 2018 Oct; 180(Pt B):594-608. PubMed ID: 29158202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-activation patterns across multiple tasks reveal robust anti-correlated functional networks.
    Li M; Dahmani L; Wang D; Ren J; Stocklein S; Lin Y; Luan G; Zhang Z; Lu G; Galiè F; Han Y; Pascual-Leone A; Wang M; Fox MD; Liu H
    Neuroimage; 2021 Feb; 227():117680. PubMed ID: 33359345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.