BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22444150)

  • 1. Transformation and strain engineering of Tetrahymena.
    Chalker DL
    Methods Cell Biol; 2012; 109():327-45. PubMed ID: 22444150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear dualism.
    Karrer KM
    Methods Cell Biol; 2012; 109():29-52. PubMed ID: 22444142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenerational function of
    Farley BM; Collins K
    RNA; 2017 Apr; 23(4):530-545. PubMed ID: 28053272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrahymena thermophila genetics: concepts and applications.
    Orias E
    Methods Cell Biol; 2012; 109():301-25. PubMed ID: 22444149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating ciliary protein-encoding genes in Tetrahymena thermophila.
    Dave D; Wloga D; Gaertig J
    Methods Cell Biol; 2009; 93():1-20. PubMed ID: 20409809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrahymena in the laboratory: strain resources, methods for culture, maintenance, and storage.
    Cassidy-Hanley DM
    Methods Cell Biol; 2012; 109():237-76. PubMed ID: 22444147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental progression of Tetrahymena through the cell cycle and conjugation.
    Cole E; Sugai T
    Methods Cell Biol; 2012; 109():177-236. PubMed ID: 22444146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole genome studies of Tetrahymena.
    Coyne RS; Stover NA; Miao W
    Methods Cell Biol; 2012; 109():53-81. PubMed ID: 22444143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome.
    Yakisich JS; Kapler GM
    Nucleic Acids Res; 2006; 34(2):620-34. PubMed ID: 16449202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.
    Li S; Yin L; Cole ES; Udani RA; Karrer KM
    Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expansion of experimental genetics approaches for Plasmodium berghei with versatile transfection vectors.
    Kooij TW; Rauch MM; Matuschewski K
    Mol Biochem Parasitol; 2012 Sep; 185(1):19-26. PubMed ID: 22705315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ribosomal RNA genes of Tetrahymena: structure and function.
    Engberg J
    Eur J Cell Biol; 1985 Jan; 36(1):133-51. PubMed ID: 3884336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Germ-line knockout heterokaryons of an essential alpha-tubulin gene enable high-frequency gene replacement and a test of gene transfer from somatic to germ-line nuclei in Tetrahymena thermophila.
    Hai B; Gorovsky MA
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1310-5. PubMed ID: 9037049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating somatic DNA copy number through maternal RNA.
    Yao MC
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):21951-2. PubMed ID: 21149732
    [No Abstract]   [Full Text] [Related]  

  • 15. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote.
    Eisen JA; Coyne RS; Wu M; Wu D; Thiagarajan M; Wortman JR; Badger JH; Ren Q; Amedeo P; Jones KM; Tallon LJ; Delcher AL; Salzberg SL; Silva JC; Haas BJ; Majoros WH; Farzad M; Carlton JM; Smith RK; Garg J; Pearlman RE; Karrer KM; Sun L; Manning G; Elde NC; Turkewitz AP; Asai DJ; Wilkes DE; Wang Y; Cai H; Collins K; Stewart BA; Lee SR; Wilamowska K; Weinberg Z; Ruzzo WL; Wloga D; Gaertig J; Frankel J; Tsao CC; Gorovsky MA; Keeling PJ; Waller RF; Patron NJ; Cherry JM; Stover NA; Krieger CJ; del Toro C; Ryder HF; Williamson SC; Barbeau RA; Hamilton EP; Orias E
    PLoS Biol; 2006 Sep; 4(9):e286. PubMed ID: 16933976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency vector-mediated transformation and gene replacement in Tetrahymena.
    Gaertig J; Gu L; Hai B; Gorovsky MA
    Nucleic Acids Res; 1994 Dec; 22(24):5391-8. PubMed ID: 7816630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable copy number of macronuclear DNA molecules in Tetrahymena.
    Brunk CF; Navas PA
    Dev Genet; 1992; 13(2):111-7. PubMed ID: 1499152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation.
    Coyne RS; Nikiforov MA; Smothers JF; Allis CD; Yao MC
    Mol Cell; 1999 Nov; 4(5):865-72. PubMed ID: 10619033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmentally programmed, RNA-directed genome rearrangement in Tetrahymena.
    Mochizuki K
    Dev Growth Differ; 2012 Jan; 54(1):108-19. PubMed ID: 22103557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The germ line limited M element of Tetrahymena is targeted for elimination from the somatic genome by a homology-dependent mechanism.
    Kowalczyk CA; Anderson AM; Arce-Larreta M; Chalker DL
    Nucleic Acids Res; 2006; 34(20):5778-89. PubMed ID: 17053100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.