BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 22444279)

  • 1. Misregulated RNA processing in amyotrophic lateral sclerosis.
    Polymenidou M; Lagier-Tourenne C; Hutt KR; Bennett CF; Cleveland DW; Yeo GW
    Brain Res; 2012 Jun; 1462():3-15. PubMed ID: 22444279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins.
    Ratti A; Buratti E
    J Neurochem; 2016 Aug; 138 Suppl 1():95-111. PubMed ID: 27015757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do the RNA-binding proteins TDP-43 and FUS relate to amyotrophic lateral sclerosis and frontotemporal degeneration, and to each other?
    Baloh RH
    Curr Opin Neurol; 2012 Dec; 25(6):701-7. PubMed ID: 23041957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frontotemporal lobar degeneration: Pathogenesis, pathology and pathways to phenotype.
    Mann DMA; Snowden JS
    Brain Pathol; 2017 Nov; 27(6):723-736. PubMed ID: 28100023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frontotemporal lobar degeneration and amyotrophic lateral sclerosis: molecular similarities and differences.
    Neumann M
    Rev Neurol (Paris); 2013 Oct; 169(10):793-8. PubMed ID: 24011641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FET proteins in frontotemporal dementia and amyotrophic lateral sclerosis.
    Mackenzie IR; Neumann M
    Brain Res; 2012 Jun; 1462():40-3. PubMed ID: 22261247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum.
    Van Langenhove T; van der Zee J; Van Broeckhoven C
    Ann Med; 2012 Dec; 44(8):817-28. PubMed ID: 22420316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis of amyotrophic lateral sclerosis.
    Liscic RM; Breljak D
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Mar; 35(2):370-2. PubMed ID: 20655970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia.
    Jovičić A; Paul JW; Gitler AD
    J Neurochem; 2016 Aug; 138 Suppl 1():134-44. PubMed ID: 27087014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients.
    Collins M; Riascos D; Kovalik T; An J; Krupa K; Krupa K; Hood BL; Conrads TP; Renton AE; Traynor BJ; Bowser R
    Acta Neuropathol; 2012 Nov; 124(5):717-32. PubMed ID: 22993125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosha inclusions are new components of dipeptide-repeat protein aggregates in FTLD-TDP and ALS C9orf72 expansion cases.
    Porta S; Kwong LK; Trojanowski JQ; Lee VM
    J Neuropathol Exp Neurol; 2015 Apr; 74(4):380-7. PubMed ID: 25756586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration.
    Lagier-Tourenne C; Polymenidou M; Cleveland DW
    Hum Mol Genet; 2010 Apr; 19(R1):R46-64. PubMed ID: 20400460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA Binding Proteins and the Pathogenesis of Frontotemporal Lobar Degeneration.
    Hofmann JW; Seeley WW; Huang EJ
    Annu Rev Pathol; 2019 Jan; 14():469-495. PubMed ID: 30355151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
    Vatovec S; Kovanda A; Rogelj B
    Neurobiol Aging; 2014 Oct; 35(10):2421.e1-2421.e12. PubMed ID: 24836899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered mRNP granule dynamics in FTLD pathogenesis.
    Bowden HA; Dormann D
    J Neurochem; 2016 Aug; 138 Suppl 1():112-33. PubMed ID: 26938019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion.
    Brettschneider J; Van Deerlin VM; Robinson JL; Kwong L; Lee EB; Ali YO; Safren N; Monteiro MJ; Toledo JB; Elman L; McCluskey L; Irwin DJ; Grossman M; Molina-Porcel L; Lee VM; Trojanowski JQ
    Acta Neuropathol; 2012 Jun; 123(6):825-39. PubMed ID: 22426854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS.
    Ito D; Suzuki N
    Neurology; 2011 Oct; 77(17):1636-43. PubMed ID: 21956718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations.
    Neumann M; Valori CF; Ansorge O; Kretzschmar HA; Munoz DG; Kusaka H; Yokota O; Ishihara K; Ang LC; Bilbao JM; Mackenzie IR
    Acta Neuropathol; 2012 Nov; 124(5):705-16. PubMed ID: 22842875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD-ALS spectrum disorders.
    Janssens J; Van Broeckhoven C
    Hum Mol Genet; 2013 Oct; 22(R1):R77-87. PubMed ID: 23900071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis.
    Broustal O; Camuzat A; Guillot-Noël L; Guy N; Millecamps S; Deffond D; Lacomblez L; Golfier V; Hannequin D; Salachas F; Camu W; Didic M; Dubois B; Meininger V; Le Ber I; Brice A;
    J Alzheimers Dis; 2010; 22(3):765-9. PubMed ID: 21158017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.