These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 22444457)

  • 81. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Quantification of chemical-polymer surface interactions in microfluidic cell culture devices.
    Xu H; Shuler ML
    Biotechnol Prog; 2009; 25(2):543-51. PubMed ID: 19358211
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A method for characterizing adsorption of flowing solutes to microfluidic device surfaces.
    Hawkins KR; Steedman MR; Baldwin RR; Fu E; Ghosal S; Yager P
    Lab Chip; 2007 Feb; 7(2):281-5. PubMed ID: 17268632
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Surface Modification of Poly(dimethylsiloxane) Using Ionic Complementary Peptides to Minimize Nonspecific Protein Adsorption.
    Yu X; Xiao J; Dang F
    Langmuir; 2015 Jun; 31(21):5891-8. PubMed ID: 25966872
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Patterned cell culture inside microfluidic devices.
    Rhee SW; Taylor AM; Tu CH; Cribbs DH; Cotman CW; Jeon NL
    Lab Chip; 2005 Jan; 5(1):102-7. PubMed ID: 15616747
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Contact angle study of blood dilutions on common microchip materials.
    Pitts KL; Abu-Mallouh S; Fenech M
    J Mech Behav Biomed Mater; 2013 Jan; 17():333-6. PubMed ID: 23127640
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Screening of PC and PMMA-binding peptides for site-specific immobilization of proteins.
    Kumada Y; Murata S; Ishikawa Y; Nakatsuka K; Kishimoto M
    J Biotechnol; 2012 Aug; 160(3-4):222-8. PubMed ID: 22426519
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Microfluidic immunoassay for bacterial toxins with supported phospholipid bilayer membranes on poly(dimethylsiloxane).
    Phillips KS; Cheng Q
    Anal Chem; 2005 Jan; 77(1):327-34. PubMed ID: 15623312
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics.
    Gökaltun A; Kang YBA; Yarmush ML; Usta OB; Asatekin A
    Sci Rep; 2019 May; 9(1):7377. PubMed ID: 31089162
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A hydrophobic adsorbent based on hierarchical porous polymers derived from morphologies of a biomineral.
    Sato K; Oaki Y; Imai H
    Chem Commun (Camb); 2015 May; 51(37):7919-22. PubMed ID: 25857302
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization.
    Liu K; Gu P; Hamaker K; Fan ZH
    J Colloid Interface Sci; 2012 Jan; 365(1):289-95. PubMed ID: 21962541
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Gas Plasma Surface Chemistry for Biological Assays.
    Sahagian K; Larner M
    Methods Mol Biol; 2015; 1318():197-214. PubMed ID: 26160577
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Superhydrophobic paper in the development of disposable labware and lab-on-paper devices.
    Sousa MP; Mano JF
    ACS Appl Mater Interfaces; 2013 May; 5(9):3731-7. PubMed ID: 23581851
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture.
    Wang L; Yu L; Grist S; Cheung KC; Chen DDY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():105-111. PubMed ID: 29073477
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications.
    Bruijns B; Veciana A; Tiggelaar R; Gardeniers H
    Biosensors (Basel); 2019 Jul; 9(3):. PubMed ID: 31277382
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Easy-to-fabricate thin-film coating on PDMS substrate with super hydrophilicity and stability.
    Sun L; Luo Y; Gao Z; Zhao W; Lin B
    Electrophoresis; 2015 Mar; 36(6):889-92. PubMed ID: 25521081
    [TBL] [Abstract][Full Text] [Related]  

  • 99. High performance of cyclic olefin copolymer-based capillary electrophoretic chips.
    Roy S; Das T; Yue CY
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5683-9. PubMed ID: 23748936
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels.
    Amarasekara CA; Rathnayaka C; Athapattu US; Zhang L; Choi J; Park S; Nagel AC; Soper SA
    J Chromatogr A; 2021 Feb; 1638():461892. PubMed ID: 33477027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.