BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22444636)

  • 1. Recovery of galactoglucomannan from wood hydrolysate using regenerated cellulose ultrafiltration membranes.
    Al Manasrah M; Kallioinen M; Ilvesniemi H; Mänttäri M
    Bioresour Technol; 2012 Jun; 114():375-81. PubMed ID: 22444636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of polymeric galactoglucomannans from hot-water extract of spruce wood.
    Song T; Pranovich A; Holmbom B
    Bioresour Technol; 2013 Feb; 130():198-203. PubMed ID: 23306129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of acid hydrolysis of water-soluble spruce O-acetyl galactoglucomannans.
    Xu C; Pranovich A; Vähäsalo L; Hemming J; Holmbom B; Schols HA; Willför S
    J Agric Food Chem; 2008 Apr; 56(7):2429-35. PubMed ID: 18333617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrillar assembly of bacterial cellulose in the presence of wood-based hemicelluloses.
    Penttilä PA; Imai T; Sugiyama J
    Int J Biol Macromol; 2017 Sep; 102():111-118. PubMed ID: 28392383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of diafiltration and size-exclusion chromatography to recover hemicelluloses from process water from thermomechanical pulping of spruce.
    Andersson A; Persson T; Zacchi G; Stålbrand H; Jönsson AS
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):971-83. PubMed ID: 18478449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobication and characterisation of O-acetyl-galactoglucomannan for papermaking and barrier applications.
    Kisonen V; Eklund P; Auer M; Sjöholm R; Pranovich A; Hemming J; Sundberg A; Aseyev V; Willför S
    Carbohydr Res; 2012 May; 352():151-8. PubMed ID: 22370176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pH control with phthalate buffers on hot-water extraction of hemicelluloses from spruce wood.
    Song T; Pranovich A; Holmbom B
    Bioresour Technol; 2011 Nov; 102(22):10518-23. PubMed ID: 21925875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of nanofibrillated cellulose using amphiphilic block-structured galactoglucomannans.
    Lozhechnikova A; Dax D; Vartiainen J; Willför S; Xu C; Österberg M
    Carbohydr Polym; 2014 Sep; 110():163-72. PubMed ID: 24906743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-based woody biorefinery.
    Amidon TE; Liu S
    Biotechnol Adv; 2009; 27(5):542-50. PubMed ID: 19393733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactoglucomannan Recovery with Hydrophilic and Hydrophobic Membranes: Process Performance and Cost Estimations.
    Al-Rudainy B; Galbe M; Lipnizki F; Wallberg O
    Membranes (Basel); 2019 Aug; 9(8):. PubMed ID: 31405130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-alkali low-temperature polysulfide pulping (HALT) of Scots pine.
    Paananen M; Sixta H
    Bioresour Technol; 2015 Oct; 193():97-102. PubMed ID: 26119050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films.
    Oinonen P; Areskogh D; Henriksson G
    Carbohydr Polym; 2013 Jun; 95(2):690-6. PubMed ID: 23648031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cellulose resource matrix.
    Keijsers ER; Yılmaz G; van Dam JE
    Carbohydr Polym; 2013 Mar; 93(1):9-21. PubMed ID: 23465896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and recovery of monosaccharides from lignocellulose hot water extracts in a pulp mill biorefinery.
    Sainio T; Kallioinen M; Nakari O; Mänttäri M
    Bioresour Technol; 2013 May; 135():730-7. PubMed ID: 23069608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the performance of UF membranes in olive mill wastewaters treatment.
    Cassano A; Conidi C; Drioli E
    Water Res; 2011 May; 45(10):3197-204. PubMed ID: 21489594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of valuable soluble compounds from washing waters generated during small fatty pelagic surimi processing by membrane processes.
    Dumay J; Radier S; Barnathan G; Bergé JP; Jaouen P
    Environ Technol; 2008 Apr; 29(4):451-61. PubMed ID: 18619150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses.
    Sukhbaatar B; Hassan el B; Kim M; Steele P; Ingram L
    Carbohydr Polym; 2014 Jan; 101():196-202. PubMed ID: 24299765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.
    Liu S
    Biotechnol Adv; 2010; 28(5):563-82. PubMed ID: 20493246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafiltration behavior of selected pharmaceuticals on natural and synthetic membranes in the presence of humic-rich hydrocolloids.
    Burba P; Geltenpoth H; Nolte J
    Anal Bioanal Chem; 2005 Aug; 382(8):1934-41. PubMed ID: 16021427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separate and concentrate lactic acid using combination of nanofiltration and reverse osmosis membranes.
    Li Y; Shahbazi A; Williams K; Wan C
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):1-9. PubMed ID: 18401749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.