These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22444765)

  • 61. Genetic analysis of carcass traits in beef cattle using random regression models.
    Englishby TM; Banos G; Moore KL; Coffey MP; Evans RD; Berry DP
    J Anim Sci; 2016 Apr; 94(4):1354-64. PubMed ID: 27135995
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Divergent selection for postweaning feed conversion in Angus beef cattle: I. Mean comparisons.
    Bishop MD; Davis ME; Harvey WR; Wilson GR; VanStavern BD
    J Anim Sci; 1991 Nov; 69(11):4348-59. PubMed ID: 1752810
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes.
    Kahi AK; Hirooka H
    J Anim Sci; 2005 Sep; 83(9):2021-32. PubMed ID: 16100056
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Young Salers suckled bull production: effect of diet on performance, carcass and muscle characteristics and meat quality.
    Serrano E; Pradel P; Jailler R; Dubroeucq H; Bauchart D; Hocquette JF; Listrat A; Agabriel J; Micol D
    Animal; 2007 Aug; 1(7):1068-79. PubMed ID: 22444810
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Carcass traits and microsatellite distributions in offspring of sires from three geographical regions of Japan.
    Smith SB; Zembayashi M; Lunt DK; Sanders JO; Gilbert CD
    J Anim Sci; 2001 Dec; 79(12):3041-51. PubMed ID: 11811458
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Prenatal and pre-weaning growth and nutrition of cattle: long-term consequences for beef production.
    Greenwood PL; Cafe LM
    Animal; 2007 Oct; 1(9):1283-96. PubMed ID: 22444884
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genetics of slaughter precocity, carcass weight, and carcass weight gain in Chianina, Marchigiana, and Romagnola young bulls under protected geographical indication.
    Sbarra F; Mantovani R; Quaglia A; Bittante G
    J Anim Sci; 2013 Jun; 91(6):2596-604. PubMed ID: 23519731
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sire X environment interactions for growth traits of Hereford cattle.
    Tess MW; Jeske KE; Dillard EU; Robison OW
    J Anim Sci; 1984 Dec; 59(6):1467-76. PubMed ID: 6526755
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Genetic Parameters for Growth, Ultrasound and Carcass Traits in New Zealand Beef Cattle and Their Correlations with Maternal Performance.
    Weik F; Hickson RE; Morris ST; Garrick DJ; Archer JA
    Animals (Basel); 2021 Dec; 12(1):. PubMed ID: 35011133
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Herd-specific random regression carcass profiles for beef cattle after adjustment for animal genetic merit.
    Englishby TM; Moore KL; Berry DP; Coffey MP; Banos G
    Meat Sci; 2017 Jul; 129():188-196. PubMed ID: 28324871
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Economic selection index development for Beefmaster cattle I: Terminal breeding objective.
    Ochsner KP; MacNeil MD; Lewis RM; Spangler ML
    J Anim Sci; 2017 Mar; 95(3):1063-1070. PubMed ID: 28380518
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predicted carcass meat yield and primal cut yields in cattle divergent in genetic merit for a terminal index.
    Connolly SM; Cromie AR; Sleator RD; Berry DP
    Transl Anim Sci; 2019 Jan; 3(1):1-13. PubMed ID: 32704772
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Differences among Wagyu sires for USDA carcass traits and palatability attributes of cooked ribeye steaks.
    Elías Calles JA; Gaskins CT; Busboom JR; Duckett SK; Cronrath JD; Reeves JJ; Wright RW
    J Anim Sci; 2000 Jul; 78(7):1710-5. PubMed ID: 10907811
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Validation of maternal and terminal sheep breeding objectives using Irish field data.
    McHugh N; McDermott K; Bohan A; Farrell LJ; Herron J; Pabiou T
    Transl Anim Sci; 2022 Jul; 6(3):txac099. PubMed ID: 36000073
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genetic correlation estimations between artificial insemination sire performances and their progeny beef traits both measured in test stations.
    Fouilloux MN; Renand G; Gaillard J; Ménissier F
    Genet Sel Evol; 2000; 32(5):483-99. PubMed ID: 14736377
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Effect of Beef Production System on the Health, Performance, Carcass Characteristics, and Meat Quality of Holstein Bulls.
    Rutherford NH; Gordon AW; Arnott G; Lively FO
    Animals (Basel); 2020 Oct; 10(10):. PubMed ID: 33086745
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of genotype x environment interaction on genetic gain in breeding programs.
    Mulder HA; Bijma P
    J Anim Sci; 2005 Jan; 83(1):49-61. PubMed ID: 15583042
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Formulation of a decision support tool incorporating both genetic and non-genetic effects to rank young growing cattle on expected market value.
    Dunne FL; Evans RD; Kelleher MM; Walsh SW; Berry DP
    Animal; 2021 Feb; 15(2):100077. PubMed ID: 33573978
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Genomic selection using beef commercial carcass phenotypes.
    Todd DL; Roughsedge T; Woolliams JA
    Animal; 2014 Mar; 8(3):388-94. PubMed ID: 24345570
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Beef Production Systems with Steers of Dairy and Dairy × Beef Breeds Based on Forage and Semi-Natural Pastures.
    Hessle A; Therkildsen M; Arvidsson-Segerkvist K
    Animals (Basel); 2019 Dec; 9(12):. PubMed ID: 31810262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.