These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22444770)

  • 1. Wool fibre crimp is determined by mitotic asymmetry and position of final keratinisation and not ortho- and para-cortical cell segmentation.
    Hynd PI; Edwards NM; Hebart M; McDowall M; Clark S
    Animal; 2009 Jun; 3(6):838-43. PubMed ID: 22444770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell proliferation and cortical cell production in relation to wool growth.
    Wilson PA; Short BF
    Aust J Biol Sci; 1979 Jun; 32(3):317-27. PubMed ID: 508204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern and morphogenesis in skin.
    Moore GP; Jackson N; Isaacs K; Brown G
    J Theor Biol; 1998 Mar; 191(1):87-94. PubMed ID: 9593659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proteomics of wool fibre morphogenesis.
    Plowman JE; Harland DP; Ganeshan S; Woods JL; van Shaijik B; Deb-Choudhury S; Thomas A; Clerens S; Scobie DR
    J Struct Biol; 2015 Sep; 191(3):341-51. PubMed ID: 26208467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of a wool intermediate filament keratin transgene in sheep fibre alters structure.
    Bawden CS; Powell BC; Walker SK; Rogers GE
    Transgenic Res; 1998 Jul; 7(4):273-87. PubMed ID: 9859216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The differential expression of proteins in the cortical cells of wool and hair fibres.
    Plowman JE; Paton LN; Bryson WG
    Exp Dermatol; 2007 Sep; 16(9):707-14. PubMed ID: 17697142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electron microscope study of fibril: matrix arrangements in high- and low-crimp wool fibres.
    Kaplin IJ; Whiteley KJ
    Aust J Biol Sci; 1978 Jun; 31(3):231-40. PubMed ID: 727992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles.
    Yu Z; Gordon SW; Nixon AJ; Bawden CS; Rogers MA; Wildermoth JE; Maqbool NJ; Pearson AJ
    Differentiation; 2009 Mar; 77(3):307-16. PubMed ID: 19272529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Migration and keratinization of cells in wool follicles.
    Chapman RE; Downes AM; Wilson PA
    Aust J Biol Sci; 1980 Oct; 33(5):587-603. PubMed ID: 6163424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of a unique developmental mechanism specifying both wool follicle density and fibre size in sheep selected for single skin and fleece characters.
    Moore GP; Jackson N; Lax J
    Genet Res; 1989 Feb; 53(1):57-62. PubMed ID: 2714646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the structural and molecular defects in fibres and follicles of the Merino felting lustre mutant.
    Li SW; Ouyang HS; Rogers GE; Bawden CS
    Exp Dermatol; 2009 Feb; 18(2):134-42. PubMed ID: 18637126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrangement of trichokeratin intermediate filaments and matrix in the cortex of Merino wool.
    Harland DP; Caldwell JP; Woods JL; Walls RJ; Bryson WG
    J Struct Biol; 2011 Jan; 173(1):29-37. PubMed ID: 20732426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of internally administered N-[5-(4-aminophenoxy)pentyl]phthalimide on wool follicles and skin of sheep.
    Chapman RE; Rigby RD
    Aust J Biol Sci; 1980 May; 33(2):183-95. PubMed ID: 7436866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of nutrition on the crimping rate of wool and the type and proportion of constituent proteins.
    Campbell ME; Whiteley KJ; Gillespie JM
    Aust J Biol Sci; 1975 Aug; 28(4):389-97. PubMed ID: 1191129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of short-term manipulation of thyroid hormone status coinciding with primary wool follicle development on fleece characteristics in Merino sheep.
    McDowall ML; Edwards NM; Hynd PI
    Animal; 2011 Aug; 5(9):1406-13. PubMed ID: 22440286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biology of the wool follicle: an excursion into a unique tissue interaction system waiting to be re-discovered.
    Rogers GE
    Exp Dermatol; 2006 Dec; 15(12):931-49. PubMed ID: 17083360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic curvature in wool fibres is determined by the relative length of orthocortical and paracortical cells.
    Harland DP; Vernon JA; Woods JL; Nagase S; Itou T; Koike K; Scobie DA; Grosvenor AJ; Dyer JM; Clerens S
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29572427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of transport systems for cysteine, lysine, alanine, and leucine in wool follicles of sheep.
    Thomas N; Tivey DR; Penno NM; Nattrass G; Hynd PI
    J Anim Sci; 2007 Sep; 85(9):2205-13. PubMed ID: 17504964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental hair follicle biology and fine fibre production in animals.
    Galbraith H
    Animal; 2010 Sep; 4(9):1490-509. PubMed ID: 22444696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing Crimp of Fibres in Random Networks with 3D Imaging.
    Hewavidana Y; Balci MN; Gleadall A; Pourdeyhimi B; Silberschmidt VV; Demirci E
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.