These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 22444872)
21. Small-molecule inhibitor targeting the Hsp90-Cdc37 protein-protein interaction in colorectal cancer. Wang L; Zhang L; Li L; Jiang J; Zheng Z; Shang J; Wang C; Chen W; Bao Q; Xu X; Jiang Z; Zhang J; You Q Sci Adv; 2019 Sep; 5(9):eaax2277. PubMed ID: 31555737 [TBL] [Abstract][Full Text] [Related]
22. A client-binding site of Cdc37. Terasawa K; Minami Y FEBS J; 2005 Sep; 272(18):4684-90. PubMed ID: 16156789 [TBL] [Abstract][Full Text] [Related]
23. Discovery and Optimization of Small Molecules Targeting the Protein-Protein Interaction of Heat Shock Protein 90 (Hsp90) and Cell Division Cycle 37 as Orally Active Inhibitors for the Treatment of Colorectal Cancer. Wang L; Jiang J; Zhang L; Zhang Q; Zhou J; Li L; Xu X; You Q J Med Chem; 2020 Feb; 63(3):1281-1297. PubMed ID: 31935086 [TBL] [Abstract][Full Text] [Related]
24. Stability of the Peutz-Jeghers syndrome kinase LKB1 requires its binding to the molecular chaperones Hsp90/Cdc37. Nony P; Gaude H; Rossel M; Fournier L; Rouault JP; Billaud M Oncogene; 2003 Dec; 22(57):9165-75. PubMed ID: 14668798 [TBL] [Abstract][Full Text] [Related]
25. Discovery of a covalent inhibitor of heat shock protein 90 with antitumor activity that blocks the co-chaperone binding via C-terminal modification. Li L; Chen N; Xia D; Xu S; Dai W; Tong Y; Wang L; Jiang Z; You Q; Xu X Cell Chem Biol; 2021 Oct; 28(10):1446-1459.e6. PubMed ID: 33932325 [TBL] [Abstract][Full Text] [Related]
26. p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site. Silverstein AM; Grammatikakis N; Cochran BH; Chinkers M; Pratt WB J Biol Chem; 1998 Aug; 273(32):20090-5. PubMed ID: 9685350 [TBL] [Abstract][Full Text] [Related]
27. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37. Roiniotis J; Masendycz P; Ho S; Scholz GM Biochemistry; 2005 May; 44(17):6662-9. PubMed ID: 15850399 [TBL] [Abstract][Full Text] [Related]
28. Structure-activity relationship (SAR) of withanolides to inhibit Hsp90 for its activity in pancreatic cancer cells. Gu M; Yu Y; Gunaherath GM; Gunatilaka AA; Li D; Sun D Invest New Drugs; 2014 Feb; 32(1):68-74. PubMed ID: 23887853 [TBL] [Abstract][Full Text] [Related]
29. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. Czemeres J; Buse K; Verkhivker GM PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381 [TBL] [Abstract][Full Text] [Related]
30. 1H, 13C and 15N backbone resonance assignment of the Hsp90 binding domain of human Cdc37. Sreeramulu S; Kumar J; Richter C; Vogtherr M; Saxena K; Langer T; Schwalbe H J Biomol NMR; 2005 Jul; 32(3):262. PubMed ID: 16132836 [No Abstract] [Full Text] [Related]
31. Design, synthesis and bioevaluation of inhibitors targeting HSP90-CDC37 protein-protein interaction based on a hydrophobic core. Zhang Q; Wu X; Zhou J; Zhang L; Xu X; Zhang L; You Q; Wang L Eur J Med Chem; 2021 Jan; 210():112959. PubMed ID: 33109397 [TBL] [Abstract][Full Text] [Related]
32. Split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) to characterize Hsp90-Cdc37 complex and identify critical residues in protein/protein interactions. Jiang Y; Bernard D; Yu Y; Xie Y; Zhang T; Li Y; Burnett JP; Fu X; Wang S; Sun D J Biol Chem; 2010 Jul; 285(27):21023-36. PubMed ID: 20413594 [TBL] [Abstract][Full Text] [Related]
33. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1. Gaude H; Aznar N; Delay A; Bres A; Buchet-Poyau K; Caillat C; Vigouroux A; Rogon C; Woods A; Vanacker JM; Höhfeld J; Perret C; Meyer P; Billaud M; Forcet C Oncogene; 2012 Mar; 31(12):1582-91. PubMed ID: 21860411 [TBL] [Abstract][Full Text] [Related]
34. Specific association of a set of molecular chaperones including HSP90 and Cdc37 with MOK, a member of the mitogen-activated protein kinase superfamily. Miyata Y; Ikawa Y; Shibuya M; Nishida E J Biol Chem; 2001 Jun; 276(24):21841-8. PubMed ID: 11278794 [TBL] [Abstract][Full Text] [Related]
35. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Ota A; Zhang J; Ping P; Han J; Wang Y Circ Res; 2010 Apr; 106(8):1404-12. PubMed ID: 20299663 [TBL] [Abstract][Full Text] [Related]
36. Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway. Li SH; Fu J; Watkins DN; Srivastava RK; Shankar S Mol Cell Biochem; 2013 Jan; 373(1-2):217-27. PubMed ID: 23129257 [TBL] [Abstract][Full Text] [Related]
37. p50(Cdc37) can buffer the temperature-sensitive properties of a mutant of Hck. Scholz G; Hartson SD; Cartledge K; Hall N; Shao J; Dunn AR; Matts RL Mol Cell Biol; 2000 Sep; 20(18):6984-95. PubMed ID: 10958693 [TBL] [Abstract][Full Text] [Related]
38. Discovery of Novel Celastrol Derivatives as Hsp90-Cdc37 Interaction Disruptors with Antitumor Activity. Li N; Xu M; Wang B; Shi Z; Zhao Z; Tang Y; Wang X; Sun J; Chen L J Med Chem; 2019 Dec; 62(23):10798-10815. PubMed ID: 31725288 [TBL] [Abstract][Full Text] [Related]
39. Expression and purification of recombinant NRL-Hsp90α and Cdc37-CRL proteins for in vitro Hsp90/Cdc37 inhibitors screening. He J; Niu X; Hu C; Zhang H; Guo Y; Ge Y; Wang G; Jiang Y Protein Expr Purif; 2013 Nov; 92(1):119-27. PubMed ID: 24056254 [TBL] [Abstract][Full Text] [Related]
40. ATP-Driven Nonequilibrium Activation of Kinase Clients by the Molecular Chaperone Hsp90. Xu H Biophys J; 2020 Oct; 119(8):1538-1549. PubMed ID: 33038305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]