BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22445073)

  • 1. Immunolocalisation of spermidine synthase in Solanum tuberosum.
    Sichhart Y; Dräger B
    Phytochemistry; 2013 Jul; 91():117-21. PubMed ID: 22445073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putrescine N-methyltransferase in Solanum tuberosum L., a calystegine-forming plant.
    Stenzel O; Teuber M; Dräger B
    Planta; 2006 Jan; 223(2):200-12. PubMed ID: 16088399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of spermidine synthase and its implication in polyamine biosynthesis in Helicobacter pylori strain 26695.
    Lee MJ; Huang CY; Sun YJ; Huang H
    Protein Expr Purif; 2005 Oct; 43(2):140-8. PubMed ID: 16009566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic organization of plant aminopropyl transferases.
    Rodríguez-Kessler M; Delgado-Sánchez P; Rodríguez-Kessler GT; Moriguchi T; Jiménez-Bremont JF
    Plant Physiol Biochem; 2010 Jul; 48(7):574-90. PubMed ID: 20381365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spermidine synthase of the malaria parasite Plasmodium falciparum: molecular and biochemical characterisation of the polyamine synthesis enzyme.
    Haider N; Eschbach ML; Dias Sde S; Gilberger TW; Walter RD; Lüersen K
    Mol Biochem Parasitol; 2005 Aug; 142(2):224-36. PubMed ID: 15913804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding and inhibition of human spermidine synthase by decarboxylated S-adenosylhomocysteine.
    Sečkutė J; McCloskey DE; Thomas HJ; Secrist JA; Pegg AE; Ealick SE
    Protein Sci; 2011 Nov; 20(11):1836-44. PubMed ID: 21898642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Analysis of Spermidine Synthase from
    Kim S; Chang JH
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N
    Li B; Liang J; Baniasadi HR; Kurihara S; Phillips MA; Michael AJ
    J Biol Chem; 2024 May; 300(5):107281. PubMed ID: 38588807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization and homology modeling of spermidine synthase from Synechococcus sp. PCC 7942.
    Pothipongsa A; Jantaro S; Salminen TA; Incharoensakdi A
    World J Microbiol Biotechnol; 2017 Apr; 33(4):72. PubMed ID: 28299555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigations about N-aminopropyl transferases probably involved in biomineralization.
    Romer P; Faltermeier A; Mertins V; Gedrange T; Mai R; Proff P
    J Physiol Pharmacol; 2008 Nov; 59 Suppl 5():27-37. PubMed ID: 19075322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of putrescine N-methyltransferase from spermidine synthase demanded alterations in substrate binding.
    Biastoff S; Reinhardt N; Reva V; Brandt W; Dräger B
    FEBS Lett; 2009 Oct; 583(20):3367-74. PubMed ID: 19796640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization and preliminary X-ray diffraction analysis of spermidine synthase from Helicobacter pylori.
    Lu PK; Chien SY; Tsai JY; Fong CT; Lee MJ; Huang H; Sun YJ
    Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):2067-9. PubMed ID: 15502329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of spermidine synthase and spermine synthase--The polyamine-synthetic enzymes that induce early flowering in Gentiana triflora.
    Imamura T; Fujita K; Tasaki K; Higuchi A; Takahashi H
    Biochem Biophys Res Commun; 2015 Aug; 463(4):781-6. PubMed ID: 26056006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells.
    Belda-Palazón B; Ruiz L; Martí E; Tárraga S; Tiburcio AF; Culiáñez F; Farràs R; Carrasco P; Ferrando A
    PLoS One; 2012; 7(10):e46907. PubMed ID: 23056524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and mechanism of spermidine synthases.
    Wu H; Min J; Ikeguchi Y; Zeng H; Dong A; Loppnau P; Pegg AE; Plotnikov AN
    Biochemistry; 2007 Jul; 46(28):8331-9. PubMed ID: 17585781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary diversification in polyamine biosynthesis.
    Minguet EG; Vera-Sirera F; Marina A; Carbonell J; Blázquez MA
    Mol Biol Evol; 2008 Oct; 25(10):2119-28. PubMed ID: 18653732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning of plant spermidine synthases.
    Hashimoto T; Tamaki K; Suzuki K; Yamada Y
    Plant Cell Physiol; 1998 Jan; 39(1):73-9. PubMed ID: 9517003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site geometry of a novel aminopropyltransferase for biosynthesis of hyperthermophile-specific branched-chain polyamine.
    Hidese R; Tse KM; Kimura S; Mizohata E; Fujita J; Horai Y; Umezawa N; Higuchi T; Niitsu M; Oshima T; Imanaka T; Inoue T; Fujiwara S
    FEBS J; 2017 Nov; 284(21):3684-3701. PubMed ID: 28881427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants.
    Vuosku J; Karppinen K; Muilu-Mäkelä R; Kusano T; Sagor GHM; Avia K; Alakärppä E; Kestilä J; Suokas M; Nickolov K; Hamberg L; Savolainen O; Häggman H; Sarjala T
    Ann Bot; 2018 May; 121(6):1243-1256. PubMed ID: 29462244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, expression, characterisation and three-dimensional structure determination of Caenorhabditis elegans spermidine synthase.
    Dufe VT; Lüersen K; Eschbach ML; Haider N; Karlberg T; Walter RD; Al-Karadaghi S
    FEBS Lett; 2005 Nov; 579(27):6037-43. PubMed ID: 16226262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.