BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22445141)

  • 1. Predicting beef carcass composition using tissue weights of a primal cut assessed by computed tomography.
    Navajas EA; Richardson RI; Fisher AV; Hyslop JJ; Ross DW; Prieto N; Simm G; Roehe R
    Animal; 2010 Nov; 4(11):1810-7. PubMed ID: 22445141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing beef carcass tissue weights using computed tomography spirals of primal cuts.
    Navajas EA; Glasbey CA; Fisher AV; Ross DW; Hyslop JJ; Richardson RI; Simm G; Roehe R
    Meat Sci; 2010 Jan; 84(1):30-8. PubMed ID: 20374751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting beef cuts composition, fatty acids and meat quality characteristics by spiral computed tomography.
    Prieto N; Navajas EA; Richardson RI; Ross DW; Hyslop JJ; Simm G; Roehe R
    Meat Sci; 2010 Nov; 86(3):770-9. PubMed ID: 20655149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of an advanced automated ultrasonic scanner (AutoFom III) and a handheld optical probe (Destron PG-100) to determine lean yield in pork carcasses.
    Dorleku JB; Wormsbecher L; Christensen M; Campbell CP; Mandell IB; Bohrer BM
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36807699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accuracy of predicting carcass composition of three different pig genetic lines by dual-energy X-ray absorptiometry.
    Marcoux M; Faucitano L; Pomar C
    Meat Sci; 2005 Aug; 70(4):655-63. PubMed ID: 22063893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo prediction of internal fat weight in Scottish Blackface lambs, using computer tomography.
    Lambe NR; Conington J; McLean KA; Navajas EA; Fisher AV; Bünger L;
    J Anim Breed Genet; 2006 Apr; 123(2):105-13. PubMed ID: 16533364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting beef carcass meat, fat and bone proportions from carcass conformation and fat scores or hindquarter dissection.
    Conroy SB; Drennan MJ; McGee M; Keane MG; Kenny DA; Berry DP
    Animal; 2010 Feb; 4(2):234-41. PubMed ID: 22443877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and non-destructive determination of lean fat and bone content in beef using dual energy X-ray absorptiometry.
    López-Campos Ó; Roberts JC; Larsen IL; Prieto N; Juárez M; Dugan MER; Aalhus JL
    Meat Sci; 2018 Dec; 146():140-146. PubMed ID: 30145410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses.
    Mercier J; Pomar C; Marcoux M; Goulet F; Thériault M; Castonguay FW
    Meat Sci; 2006 Jun; 73(2):249-57. PubMed ID: 22062296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between lamb carcass quality traits measured by X-ray computed tomography and current UK hill sheep breeding goals.
    Lambe NR; Conington J; Bishop SC; McLean KA; Bünger L; McLaren A; Simm G
    Animal; 2008 Jan; 2(1):36-43. PubMed ID: 22444961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sheep carcass composition estimated from Longissimus thoracis et lumborum muscle volume measured by in vivo real-time ultrasonography.
    Silva SR; Guedes CM; Santos VA; Lourenço AL; Azevedo JM; Dias-da-Silva A
    Meat Sci; 2007 Aug; 76(4):708-14. PubMed ID: 22061248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic variation in wholesale carcass cuts predicted from digital images in cattle.
    Pabiou T; Fikse WF; Amer PR; Cromie AR; Näsholm A; Berry DP
    Animal; 2011 Sep; 5(11):1720-7. PubMed ID: 22440411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of lean and fat composition in swine carcasses from ham area measurements with image analysis.
    Jia J; Schinckel AP; Forrest JC; Chen W; Wagner JR
    Meat Sci; 2010 Jun; 85(2):240-4. PubMed ID: 20374892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic scanning of pork carcasses in an on-line industrial configuration.
    Berg EP; Forrest JC; Fisher JE
    J Anim Sci; 1994 Oct; 72(10):2642-52. PubMed ID: 7883623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of carcass composition and individual carcass cuts of Japanese Black steers.
    Maeno H; Oishi K; Mitsuhashi T; Kumagai H; Hirooka H
    Meat Sci; 2014 Mar; 96(3):1365-70. PubMed ID: 24342188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic parameters for carcass cut weight in Irish beef cattle.
    Pabiou T; Fikse WF; Näsholm A; Cromie AR; Drennan MJ; Keane MG; Berry DP
    J Anim Sci; 2009 Dec; 87(12):3865-76. PubMed ID: 19717761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of dietary fat source and slaughter weight in growing-finishing swine: III. Carcass and fatty acid compositions.
    Apple JK; Maxwell CV; Galloway DL; Hamilton CR; Yancey JW
    J Anim Sci; 2009 Apr; 87(4):1441-54. PubMed ID: 19066247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle: Bone ratios in beef rib sections.
    Dolezal HG; Murphey CE; Smith GC; Carpenter ZL; McCartor M
    Meat Sci; 1982 Jan; 6(1):55-64. PubMed ID: 22054706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary zilpaterol hydrochloride. II. Carcass composition and meat palatability of beef cattle.
    Leheska JM; Montgomery JL; Krehbiel CR; Yates DA; Hutcheson JP; Nichols WT; Streeter M; Blanton JR; Miller MF
    J Anim Sci; 2009 Apr; 87(4):1384-93. PubMed ID: 18849379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of genetic merit for carcass weight, breed type and slaughter weight on performance and carcass traits of beef × dairy steers.
    Keane MG; Dunne PG; Kenny DA; Berry DP
    Animal; 2011 Feb; 5(2):182-94. PubMed ID: 22440762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.