These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 22445202)
1. Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree. Villa-Rojas R; Sosa-Morales ME; López-Malo A; Tang J Int J Food Microbiol; 2012 Apr; 155(3):269-72. PubMed ID: 22445202 [TBL] [Abstract][Full Text] [Related]
2. Dark Period Following UV-C Treatment Enhances Killing of Botrytis cinerea Conidia and Controls Gray Mold of Strawberries. Janisiewicz WJ; Takeda F; Glenn DM; Camp MJ; Jurick WM Phytopathology; 2016 Apr; 106(4):386-94. PubMed ID: 26714103 [TBL] [Abstract][Full Text] [Related]
3. Botrytis cinerea response to pulsed light: Cultivability, physiological state, ultrastructure and growth ability on strawberry fruit. Romero Bernal AR; Contigiani EV; González HHL; Alzamora SM; Gómez PL; Raffellini S Int J Food Microbiol; 2019 Nov; 309():108311. PubMed ID: 31499266 [TBL] [Abstract][Full Text] [Related]
4. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. Marquenie D; Geeraerd AH; Lammertyn J; Soontjens C; Van Impe JF; Michiels CW; Nicolaï BM Int J Food Microbiol; 2003 Aug; 85(1-2):185-96. PubMed ID: 12810282 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment. Marquenie D; Lammertyn J; Geeraerd AH; Soontjens C; Van Impe JF; Nicolaï BM; Michiels CW Int J Food Microbiol; 2002 Mar; 74(1-2):27-35. PubMed ID: 11930952 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931 [TBL] [Abstract][Full Text] [Related]
7. Comparing thermal inactivation to a combined process of moderate heat and high pressure: Effect on ascospores in strawberry puree. Timmermans R; Hayrapetyan H; Vollebregt M; Dijksterhuis J Int J Food Microbiol; 2020 Jul; 325():108629. PubMed ID: 32325344 [TBL] [Abstract][Full Text] [Related]
8. Microbial interaction between Salmonella enterica and main postharvest fungal pathogens on strawberry fruit. Ortiz-Solà J; Valero A; Viñas I; Colás-Medà P; Abadias M Int J Food Microbiol; 2020 May; 320():108489. PubMed ID: 31954976 [TBL] [Abstract][Full Text] [Related]
9. Effect of storage temperature, water activity, oxygen headspace concentration and pasteurization intensity on the time to growth of Aspergillus fischerianus (teleomorph Neosartorya fischeri). Dos Santos JLP; Samapundo S; Djunaidi S; Vermeulen A; Sant'Ana AS; Van Impe J; Devlieghere F Food Microbiol; 2020 Jun; 88():103406. PubMed ID: 31997762 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing. Evelyn ; Silva FVM Int J Food Microbiol; 2015 Dec; 214():129-136. PubMed ID: 26280285 [TBL] [Abstract][Full Text] [Related]
11. First Report of Fludioxonil Resistance in Botrytis cinerea, the Causal Agent of Gray Mold, from Strawberry Fields in Maryland and South Carolina. Fernández-Ortuño D; Grabke A; Bryson PK; Rouse RJ; Rollins P; Schnabel G Plant Dis; 2014 May; 98(5):692. PubMed ID: 30708511 [TBL] [Abstract][Full Text] [Related]
12. Strategies to enhance high pressure inactivation of murine norovirus in strawberry puree and on strawberries. Huang R; Li X; Huang Y; Chen H Int J Food Microbiol; 2014 Aug; 185():1-6. PubMed ID: 24927397 [TBL] [Abstract][Full Text] [Related]
13. Quantitative microbial spoilage risk assessment (QMSRA) of pasteurized strawberry purees by Aspergillus fischeri (teleomorph Neosartorya fischeri). Santos JLPD; Membré JM; Jacxsens L; Samapundo S; Van Impe J; Sant'Ana AS; Devlieghere F Int J Food Microbiol; 2020 Nov; 333():108781. PubMed ID: 32711130 [TBL] [Abstract][Full Text] [Related]
14. First Report of Fludioxonil Resistance in Botrytis cinerea from a Strawberry Field in Virginia. Fernández-Ortuño D; Bryson PK; Grabke A; Schnabel G Plant Dis; 2013 Jun; 97(6):848. PubMed ID: 30722628 [TBL] [Abstract][Full Text] [Related]
15. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467 [TBL] [Abstract][Full Text] [Related]
16. Aspergilli with Neosartorya-type ascospores: heat resistance and effect of sugar concentration on growth and spoilage incidence in berry products. Berni E; Tranquillini R; Scaramuzza N; Brutti A; Bernini V Int J Food Microbiol; 2017 Oct; 258():81-88. PubMed ID: 28772258 [TBL] [Abstract][Full Text] [Related]
17. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production. Qin X; Xiao H; Cheng X; Zhou H; Si L Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170 [TBL] [Abstract][Full Text] [Related]
18. Effect of calcium on cell-wall degrading enzymes of Botrytis cinerea. Sasanuma I; Suzuki T Biosci Biotechnol Biochem; 2016 Sep; 80(9):1730-6. PubMed ID: 26998660 [TBL] [Abstract][Full Text] [Related]
19. Influence of temperature and relative humidity on the antifungal effect of 405 nm LEDs against Botrytis cinerea and Rhizopus stolonifer and their inactivation on strawberries and tomatoes. Ghate V; Yew I; Zhou W; Yuk HG Int J Food Microbiol; 2021 Dec; 359():109427. PubMed ID: 34655922 [TBL] [Abstract][Full Text] [Related]
20. Early detection of Botrytis cinerea in strawberry fruit during quiescent infection using selected ion flow tube mass spectrometry (SIFT-MS). Zhao Y; De Coninck B; Ribeiro B; Nicolaï B; Hertog M Int J Food Microbiol; 2023 Oct; 402():110313. PubMed ID: 37421873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]