These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 22445513)
1. Intestinal fatty acid infusion modulates food preference as well as calorie intake via the vagal nerve and midbrain-hypothalamic neural pathways in rats. Ogawa N; Ito M; Yamaguchi H; Shiuchi T; Okamoto S; Wakitani K; Minokoshi Y; Nakazato M Metabolism; 2012 Sep; 61(9):1312-20. PubMed ID: 22445513 [TBL] [Abstract][Full Text] [Related]
2. The vagal afferent pathway does not play a major role in the induction of satiety by intestinal fatty acid in rats. Ogawa N; Yamaguchi H; Shimbara T; Toshinai K; Kakutani M; Yonemori F; Nakazato M Neurosci Lett; 2008 Mar; 433(1):38-42. PubMed ID: 18248897 [TBL] [Abstract][Full Text] [Related]
3. Meal patterns and macronutrient intake after peripheral and PVN injections of the alpha 2-receptor antagonist idazoxan. Alexander JT; Cheung WK; Dietz CB; Leibowitz SF Physiol Behav; 1993 Apr; 53(4):623-30. PubMed ID: 8099748 [TBL] [Abstract][Full Text] [Related]
4. Suppression of food intake by GI fatty acid infusions: roles of celiac vagal afferents and cholecystokinin. Cox JE; Kelm GR; Meller ST; Randich A Physiol Behav; 2004 Aug; 82(1):27-33. PubMed ID: 15234586 [TBL] [Abstract][Full Text] [Related]
6. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, suppresses food intake and gastric emptying with the elevation of plasma peptide YY and glucagon-like peptide-1 in a dietary fat-dependent manner. Hata T; Mera Y; Ishii Y; Tadaki H; Tomimoto D; Kuroki Y; Kawai T; Ohta T; Kakutani M J Pharmacol Exp Ther; 2011 Mar; 336(3):850-6. PubMed ID: 21139060 [TBL] [Abstract][Full Text] [Related]
7. Responses to oleic, linoleic and α-linolenic acids in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Poudyal H; Kumar SA; Iyer A; Waanders J; Ward LC; Brown L J Nutr Biochem; 2013 Jul; 24(7):1381-92. PubMed ID: 23333092 [TBL] [Abstract][Full Text] [Related]
8. Truncal and hepatic vagotomy reduce suppression of feeding by jejunal lipid infusions. Cox JE; Kelm GR; Meller ST; Spraggins DS; Randich A Physiol Behav; 2004 Mar; 81(1):29-36. PubMed ID: 15059681 [TBL] [Abstract][Full Text] [Related]
9. Nutrient-specific feeding and endocrine effects of jejunal infusions in obese animals. Dailey MJ; Moghadam AA; Moran TH Am J Physiol Regul Integr Comp Physiol; 2014 Mar; 306(6):R420-8. PubMed ID: 24452547 [TBL] [Abstract][Full Text] [Related]
10. Noradrenergic innervation of the paraventricular nucleus: specific role in control of carbohydrate ingestion. Leibowitz SF; Weiss GF; Yee F; Tretter JB Brain Res Bull; 1985 Jun; 14(6):561-7. PubMed ID: 4027695 [TBL] [Abstract][Full Text] [Related]
11. Different forms of obesity as a function of diet composition. Dourmashkin JT; Chang GQ; Gayles EC; Hill JO; Fried SK; Julien C; Leibowitz SF Int J Obes (Lond); 2005 Nov; 29(11):1368-78. PubMed ID: 16088331 [TBL] [Abstract][Full Text] [Related]
13. Peripheral α2-β1 adrenergic interactions mediate the ghrelin response to brain urocortin 1 in rats. Yakabi K; Harada Y; Takayama K; Ro S; Ochiai M; Iizuka S; Hattori T; Wang L; Taché Y Psychoneuroendocrinology; 2014 Dec; 50():300-10. PubMed ID: 25265283 [TBL] [Abstract][Full Text] [Related]
14. Ghrelin, macronutrient intake and dietary preferences in long-evans rats. Beck B; Musse N; Stricker-Krongrad A Biochem Biophys Res Commun; 2002 Apr; 292(4):1031-5. PubMed ID: 11944918 [TBL] [Abstract][Full Text] [Related]
15. Photoperiod regulates dietary preferences and energy metabolism in young developing Fischer 344 rats but not in same-age Wistar rats. Togo Y; Otsuka T; Goto M; Furuse M; Yasuo S Am J Physiol Endocrinol Metab; 2012 Sep; 303(6):E777-86. PubMed ID: 22811472 [TBL] [Abstract][Full Text] [Related]
16. Hypothalamic obesity in the weanling rat: dietary self-selection, actual macro-nutrient intake, caloric regulation and response to subsequent low palatability diet. Bernardis LL; Luboshitzky R; Bellinger LL; McEwen G Int J Obes; 1982; 6(4):369-82. PubMed ID: 7129749 [TBL] [Abstract][Full Text] [Related]
17. Plasma n-6 and n-3 polyunsaturated fatty acids as biomarkers of their dietary intakes: a cross-sectional study within a cohort of middle-aged French men and women. Astorg P; Bertrais S; Laporte F; Arnault N; Estaquio C; Galan P; Favier A; Hercberg S Eur J Clin Nutr; 2008 Oct; 62(10):1155-61. PubMed ID: 17622261 [TBL] [Abstract][Full Text] [Related]
18. The effects of intestinal infusion of long-chain fatty acids on food intake in humans. French SJ; Conlon CA; Mutuma ST; Arnold M; Read NW; Meijer G; Francis J Gastroenterology; 2000 Oct; 119(4):943-8. PubMed ID: 11040181 [TBL] [Abstract][Full Text] [Related]
19. Comparison of postprandial profiles of ghrelin, active GLP-1, and total PYY to meals varying in fat and carbohydrate and their association with hunger and the phases of satiety. Gibbons C; Caudwell P; Finlayson G; Webb DL; Hellström PM; Näslund E; Blundell JE J Clin Endocrinol Metab; 2013 May; 98(5):E847-55. PubMed ID: 23509106 [TBL] [Abstract][Full Text] [Related]
20. The effects of phenylpropanolamine on Zucker rats selected for fat food preference. Svec F; Muehlenhein M; Porter J Nutr Neurosci; 2003 Apr; 6(2):93-102. PubMed ID: 12722984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]