BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22445790)

  • 1. Physiologically based kinetic modeling of bioactivation and detoxification of the alkenylbenzene methyleugenol in human as compared with rat.
    Al-Subeihi AA; Spenkelink B; Punt A; Boersma MG; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2012 May; 260(3):271-84. PubMed ID: 22445790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of methyleugenol bioactivation by the herb-based constituent nevadensin and prediction of possible in vivo consequences using physiologically based kinetic modeling.
    Al-Subeihi AA; Alhusainy W; Paini A; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM
    Food Chem Toxicol; 2013 Sep; 59():564-71. PubMed ID: 23831728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologically based biokinetic model of bioactivation and detoxification of the alkenylbenzene methyleugenol in rat.
    Al-Subeihi AA; Spenkelink B; Rachmawati N; Boersma MG; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM
    Toxicol In Vitro; 2011 Feb; 25(1):267-85. PubMed ID: 20828604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the interindividual human variation in bioactivation of methyleugenol using physiologically based kinetic modeling and Monte Carlo simulations.
    Al-Subeihi AA; Alhusainy W; Kiwamoto R; Spenkelink B; van Bladeren PJ; Rietjens IM; Punt A
    Toxicol Appl Pharmacol; 2015 Mar; 283(2):117-26. PubMed ID: 25549870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative in vitro kinetic study of [14C]-eugenol and [14C]-methyleugenol activation and detoxification in human, mouse, and rat liver and lung fractions.
    Minet EF; Daniela G; Meredith C; Massey ED
    Xenobiotica; 2012 May; 42(5):429-41. PubMed ID: 22188410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.
    Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiologically based kinetic models for the alkenylbenzene elemicin in rat and human and possible implications for risk assessment.
    van den Berg SJ; Punt A; Soffers AE; Vervoort J; Ngeleja S; Spenkelink B; Rietjens IM
    Chem Res Toxicol; 2012 Nov; 25(11):2352-67. PubMed ID: 22992039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of methyleugenol in liver microsomes and primary hepatocytes: pattern of metabolites, cytotoxicity, and DNA-adduct formation.
    Cartus AT; Herrmann K; Weishaupt LW; Merz KH; Engst W; Glatt H; Schrenk D
    Toxicol Sci; 2012 Sep; 129(1):21-34. PubMed ID: 22610610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human cytochrome p450 enzymes of importance for the bioactivation of methyleugenol to the proximate carcinogen 1'-hydroxymethyleugenol.
    Jeurissen SM; Bogaards JJ; Boersma MG; ter Horst JP; Awad HM; Fiamegos YC; van Beek TA; Alink GM; Sudhölter EJ; Cnubben NH; Rietjens IM
    Chem Res Toxicol; 2006 Jan; 19(1):111-6. PubMed ID: 16411663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The natural basil flavonoid nevadensin protects against a methyleugenol-induced marker of hepatocarcinogenicity in male F344 rat.
    Alhusainy W; Williams GM; Jeffrey AM; Iatropoulos MJ; Taylor S; Adams TB; Rietjens IM
    Food Chem Toxicol; 2014 Dec; 74():28-34. PubMed ID: 25218219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunochemical detection of covalently modified protein adducts in livers of rats treated with methyleugenol.
    Gardner I; Bergin P; Stening P; Kenna JG; Caldwell J
    Chem Res Toxicol; 1996 Jun; 9(4):713-21. PubMed ID: 8831815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiologically based biokinetic (PBBK) model for safrole bioactivation and detoxification in rats.
    Martati E; Boersma MG; Spenkelink A; Khadka DB; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2011 Jun; 24(6):818-34. PubMed ID: 21446753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of human and murine sulfotransferases able to activate hydroxylated metabolites of methyleugenol to mutagens in Salmonella typhimurium and detection of associated DNA adducts using UPLC-MS/MS methods.
    Herrmann K; Engst W; Appel KE; Monien BH; Glatt H
    Mutagenesis; 2012 Jul; 27(4):453-62. PubMed ID: 22337896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared with male rats.
    Punt A; Paini A; Boersma MG; Freidig AP; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2009 Aug; 110(2):255-69. PubMed ID: 19447879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of hepatic DNA adducts by methyleugenol in mouse models: drastic decrease by Sult1a1 knockout and strong increase by transgenic human SULT1A1/2.
    Herrmann K; Engst W; Meinl W; Florian S; Cartus AT; Schrenk D; Appel KE; Nolden T; Himmelbauer H; Glatt H
    Carcinogenesis; 2014 Apr; 35(4):935-41. PubMed ID: 24318996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically based kinetic modeling of the bioactivation of myristicin.
    Al-Malahmeh AJ; Al-Ajlouni A; Wesseling S; Soffers AE; Al-Subeihi A; Kiwamoto R; Vervoort J; Rietjens IM
    Arch Toxicol; 2017 Feb; 91(2):713-734. PubMed ID: 27334372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically based biokinetic (PBBK) modeling of safrole bioactivation and detoxification in humans as compared with rats.
    Martati E; Boersma MG; Spenkelink A; Khadka DB; van Bladeren PJ; Rietjens IM; Punt A
    Toxicol Sci; 2012 Aug; 128(2):301-16. PubMed ID: 22588462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physiologically based biokinetic (PBBK) model for estragole bioactivation and detoxification in rat.
    Punt A; Freidig AP; Delatour T; Scholz G; Boersma MG; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):248-59. PubMed ID: 18539307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Interaction of Protein Cysteine Residues with Reactive Metabolites of Methyleugenol.
    Feng Y; Wang H; Wang Q; Huang W; Peng Y; Zheng J
    Chem Res Toxicol; 2017 Feb; 30(2):564-573. PubMed ID: 28107620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estragole DNA adduct accumulation in human liver HepaRG cells upon repeated in vitro exposure.
    Yang S; Wesseling S; Rietjens IMCM
    Toxicol Lett; 2021 Feb; 337():1-6. PubMed ID: 33189830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.