BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 22445834)

  • 1. Physico-chemical assessment of a fixated flue-gas desulfurization sludge cap emplaced along with other coal-combustion residues to abate acid mine drainage.
    Naylor S; Branam TD; Olyphant GA
    J Contam Hydrol; 2012 May; 132():37-47. PubMed ID: 22445834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses.
    Chen L; Stehouwer R; Tong X; Kost D; Bigham JM; Dick WA
    Chemosphere; 2015 Sep; 134():459-65. PubMed ID: 26001939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term influence of coal mine reclamation using coal combustion residues on groundwater quality.
    Cheng CM; Amaya M; Butalia T; Baker R; Walker HW; Massey-Norton J; Wolfe W
    Sci Total Environ; 2016 Nov; 571():834-54. PubMed ID: 27453136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of flue gas desulfurization (FGD) by-product on water quality at an underground coal mine.
    Lamminen M; Wood J; Walker H; Chin YP; He Y; Traina SJ
    J Environ Qual; 2001; 30(4):1371-81. PubMed ID: 11476516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mining activities on evolution of water quality of karst waters in Midwestern Guizhou, China: evidences from hydrochemistry and isotopic composition.
    Li X; Wu P; Han Z; Zha X; Ye H; Qin Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1220-1230. PubMed ID: 29082473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: Implications for water resources management and remediation.
    Caraballo MA; Macías F; Nieto JM; Ayora C
    Sci Total Environ; 2016 Jan; 539():427-435. PubMed ID: 26379258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia).
    Ortegón GP; Arboleda FM; Candela L; Tamoh K; Valdes-Abellan J
    Sci Total Environ; 2016 Jan; 539():410-419. PubMed ID: 26372944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms controlling the leaching kinetics of fixated flue gas desulfurization (FGD) material under neutral and acidic conditions.
    Cheng CM; Walker HW; Bigham JM
    J Environ Qual; 2007; 36(3):874-86. PubMed ID: 17485719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage.
    Gibert O; Cortina JL; de Pablo J; Ayora C
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7854-62. PubMed ID: 23361181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, Northern Anhui Province, China.
    Lin ML; Peng WH; Gui HR
    Environ Monit Assess; 2016 Apr; 188(4):202. PubMed ID: 26932793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and physical properties of dry flue gas desulfurization products.
    Kost DA; Bigham JM; Stehouwer RC; Beeghly JH; Fowler R; Traina SJ; Wolfe WE; Dick WA
    J Environ Qual; 2005; 34(2):676-86. PubMed ID: 15758120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.
    Cánovas CR; Macías F; Pérez-López R
    J Contam Hydrol; 2016 May; 188():29-43. PubMed ID: 26972101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.
    Ali A; Strezov V; Davies P; Wright I
    Environ Monit Assess; 2017 Aug; 189(8):408. PubMed ID: 28733784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An appraisal of the potential use of fly ash for reclaiming coal mine spoil.
    Ram LC; Masto RE
    J Environ Manage; 2010; 91(3):603-17. PubMed ID: 19914766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A first evaluation of water resource conditions after an environmental reclamation effort at a former degraded coal mining area in Southern Brazil.
    Cardoso AT; Fan FM
    Environ Monit Assess; 2021 Sep; 193(10):632. PubMed ID: 34490524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.
    Mirecki JE; Bennett MW; López-Baláez MC
    Ground Water; 2013; 51(4):539-49. PubMed ID: 23106789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined chemical and phytoremediation method for reclamation of acid mine drainage-impacted soils.
    RoyChowdhury A; Sarkar D; Datta R
    Environ Sci Pollut Res Int; 2019 May; 26(14):14414-14425. PubMed ID: 30868460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.
    Nason P; Johnson RH; Neuschütz C; Alakangas L; Öhlander B
    J Hazard Mater; 2014 Feb; 267():245-54. PubMed ID: 24462894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of flue gas desulfurization residue on plant establishment and soil and leachate quality.
    Punshon T; Adriano DC; Weber JT
    J Environ Qual; 2001; 30(3):1071-80. PubMed ID: 11401255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical analysis of soil and leachate from experimental wetland mesocosms lined with coal combustion products.
    Ahn C; Mitsch WJ
    J Environ Qual; 2001; 30(4):1457-63. PubMed ID: 11476525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.