BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22445952)

  • 1. High fidelity tonotopic mapping using swept source functional magnetic resonance imaging.
    Cheung MM; Lau C; Zhou IY; Chan KC; Zhang JW; Fan SJ; Wu EX
    Neuroimage; 2012 Jul; 61(4):978-86. PubMed ID: 22445952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BOLD fMRI investigation of the rat auditory pathway and tonotopic organization.
    Cheung MM; Lau C; Zhou IY; Chan KC; Cheng JS; Zhang JW; Ho LC; Wu EX
    Neuroimage; 2012 Apr; 60(2):1205-11. PubMed ID: 22297205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional magnetic resonance imaging of sound pressure level encoding in the rat central auditory system.
    Zhang JW; Lau C; Cheng JS; Xing KK; Zhou IY; Cheung MM; Wu EX
    Neuroimage; 2013 Jan; 65():119-26. PubMed ID: 23041525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BOLD fMRI study of ultrahigh frequency encoding in the inferior colliculus.
    Gao PP; Zhang JW; Chan RW; Leong AT; Wu EX
    Neuroimage; 2015 Jul; 114():427-37. PubMed ID: 25869860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The inferior colliculus is involved in deviant sound detection as revealed by BOLD fMRI.
    Gao PP; Zhang JW; Cheng JS; Zhou IY; Wu EX
    Neuroimage; 2014 May; 91():220-7. PubMed ID: 24486979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence.
    Seifritz E; Di Salle F; Esposito F; Herdener M; Neuhoff JG; Scheffler K
    Neuroimage; 2006 Feb; 29(3):1013-22. PubMed ID: 16253522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attention modulates sound processing in human auditory cortex but not the inferior colliculus.
    Rinne T; Stecker GC; Kang X; Yund EW; Herron TJ; Woods DL
    Neuroreport; 2007 Aug; 18(13):1311-4. PubMed ID: 17762703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial organization of receptive fields in the auditory midbrain of awake mouse.
    Portfors CV; Mayko ZM; Jonson K; Cha GF; Roberts PD
    Neuroscience; 2011 Oct; 193():429-39. PubMed ID: 21807069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tonotopic gradients in human primary auditory cortex: concurring evidence from high-resolution 7 T and 3 T fMRI.
    Da Costa S; Saenz M; Clarke S; van der Zwaag W
    Brain Topogr; 2015 Jan; 28(1):66-9. PubMed ID: 25098273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-plastic reorganization of frequency coding in the inferior colliculus of the rat following noise-induced hearing loss.
    Izquierdo MA; Gutiérrez-Conde PM; Merchán MA; Malmierca MS
    Neuroscience; 2008 Jun; 154(1):355-69. PubMed ID: 18384972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI.
    Petkov CI; Kayser C; Augath M; Logothetis NK
    Magn Reson Imaging; 2009 Oct; 27(8):1065-73. PubMed ID: 19269764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-specific attentional modulation in human primary auditory cortex and midbrain.
    Riecke L; Peters JC; Valente G; Poser BA; Kemper VG; Formisano E; Sorger B
    Neuroimage; 2018 Jul; 174():274-287. PubMed ID: 29571712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging.
    Chan KC; Li J; Kau P; Zhou IY; Cheung MM; Lau C; Yang J; So KF; Wu EX
    Neuroimage; 2011 Jan; 54(1):389-95. PubMed ID: 20633657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping tonotopy in human auditory cortex.
    van Dijk P; Langers DR
    Adv Exp Med Biol; 2013; 787():419-25. PubMed ID: 23716248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A discontinuous tonotopic organization in the inferior colliculus of the rat.
    Malmierca MS; Izquierdo MA; Cristaudo S; Hernández O; Pérez-González D; Covey E; Oliver DL
    J Neurosci; 2008 Apr; 28(18):4767-76. PubMed ID: 18448653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitopicity of the human auditory cortex: an fMRI study.
    Bilecen D; Seifritz E; Scheffler K; Henning J; Schulte AC
    Neuroimage; 2002 Oct; 17(2):710-8. PubMed ID: 12377146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial correspondence between functional MRI (fMRI) activations and cortical current density maps of event-related potentials (ERP): a study with four tasks.
    Minati L; Rosazza C; Zucca I; D'Incerti L; Scaioli V; Bruzzone MG
    Brain Topogr; 2008 Dec; 21(2):112-27. PubMed ID: 18758934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multilevel and cross-modal approach towards neuronal mechanisms of auditory streaming.
    Rahne T; Deike S; Selezneva E; Brosch M; König R; Scheich H; Böckmann M; Brechmann A
    Brain Res; 2008 Jul; 1220():118-31. PubMed ID: 17765207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound frequency representation in primary auditory cortex is level tolerant for moderately loud, complex sounds.
    Pienkowski M; Eggermont JJ
    J Neurophysiol; 2011 Aug; 106(2):1016-27. PubMed ID: 21653719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonotopic mapping of human auditory cortex.
    Saenz M; Langers DR
    Hear Res; 2014 Jan; 307():42-52. PubMed ID: 23916753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.