These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22446074)

  • 1. Concerns on liquid mercury and mercury-containing wastes: a review of the treatment technologies for the safe storage.
    Rodríguez O; Padilla I; Tayibi H; López-Delgado A
    J Environ Manage; 2012 Jun; 101():197-205. PubMed ID: 22446074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of mercury-containing wastes using sulfide.
    Piao H; Bishop PL
    Environ Pollut; 2006 Feb; 139(3):498-506. PubMed ID: 16099084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes.
    Randall P; Chattopadhyay S
    J Hazard Mater; 2004 Oct; 114(1-3):211-23. PubMed ID: 15511593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.
    Zhang S; Zhang X; Xiong Y; Wang G; Zheng N
    Waste Manag Res; 2015 Feb; 33(2):183-90. PubMed ID: 25568090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of ground granulated blast furnace slag on stabilization/solidification of simulated mercury-doped wastes in chemically bonded phosphate ceramics.
    Liu Z; Qian G; Zhou J; Li C; Xu Y; Qin Z
    J Hazard Mater; 2008 Aug; 157(1):146-53. PubMed ID: 18289781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury-bearing wastes: Sources, policies and treatment technologies for mercury recovery and safe disposal.
    Chalkidis A; Jampaiah D; Aryana A; Wood CD; Hartley PG; Sabri YM; Bhargava SK
    J Environ Manage; 2020 Sep; 270():110945. PubMed ID: 32721358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury leaching from hazardous industrial wastes stabilized by sulfur polymer encapsulation.
    López FA; Alguacil FJ; Rodríguez O; Sierra MJ; Millán R
    Waste Manag; 2015 Jan; 35():301-6. PubMed ID: 25458763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of international trends in mercury management and available options for permanent or long-term mercury storage.
    Lee KJ; Lee TG
    J Hazard Mater; 2012 Nov; 241-242():1-13. PubMed ID: 23040312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching of mercury-containing cement monoliths aged for one year.
    Svensson M; Allard B
    Waste Manag; 2008; 28(3):597-603. PubMed ID: 17544639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal plasma technology for the treatment of wastes: a critical review.
    Gomez E; Rani DA; Cheeseman CR; Deegan D; Wise M; Boccaccini AR
    J Hazard Mater; 2009 Jan; 161(2-3):614-26. PubMed ID: 18499345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization and solidification of elemental mercury for safe disposal and/or long-term storage.
    Lee TG; Eom Y; Lee CH; Song KS
    J Air Waste Manag Assoc; 2011 Oct; 61(10):1057-62. PubMed ID: 22070038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery and safer disposal of phosphate coating sludge by solidification/stabilization.
    Ucaroglu S; Talinli I
    J Environ Manage; 2012 Aug; 105():131-7. PubMed ID: 22542981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes.
    Cho JH; Eom Y; Lee TG
    J Hazard Mater; 2014 Aug; 278():474-82. PubMed ID: 24997263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting hazardous waste solidification/stabilization: a review.
    Malviya R; Chaudhary R
    J Hazard Mater; 2006 Sep; 137(1):267-76. PubMed ID: 16530943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching behaviour of hazardous demolition waste.
    Roussat N; Méhu J; Abdelghafour M; Brula P
    Waste Manag; 2008 Nov; 28(11):2032-40. PubMed ID: 18160273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization/solidification (S/S) of mercury-containing wastes using reactivated carbon and Portland cement.
    Zhang J; Bishop PL
    J Hazard Mater; 2002 May; 92(2):199-212. PubMed ID: 11992703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization/solidification (S/S) of mercury-contaminated hazardous wastes using thiol-functionalized zeolite and Portland cement.
    Zhang XY; Wang QC; Zhang SQ; Sun XJ; Zhang ZS
    J Hazard Mater; 2009 Sep; 168(2-3):1575-80. PubMed ID: 19376646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant.
    Starvin AM; Rao TP
    J Hazard Mater; 2004 Sep; 113(1-3):75-9. PubMed ID: 15363516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.
    Lee WR; Eom Y; Lee TG
    Waste Manag; 2017 Feb; 60():546-551. PubMed ID: 28024896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the analytic hierarchy process to compare alternatives for the long-term management of surplus mercury.
    Randall P; Brown L; Deschaine L; Dimarzio J; Kaiser G; Vierow J
    J Environ Manage; 2004 May; 71(1):35-43. PubMed ID: 15084358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.