These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22446200)

  • 1. Coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators.
    Sumetsky M; Abedin K; DiGiovanni DJ; Dulashko Y; Fini JM; Monberg E
    Opt Lett; 2012 Mar; 37(6):990-2. PubMed ID: 22446200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface nanoscale axial photonics: robust fabrication of high-quality-factor microresonators.
    Sumetsky M; DiGiovanni DJ; Dulashko Y; Fini JM; Liu X; Monberg EM; Taunay TF
    Opt Lett; 2011 Dec; 36(24):4824-6. PubMed ID: 22179896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-induced SNAP: fabrication, trimming, and tuning of microresonator chains.
    Sumetsky M; DiGiovanni DJ; Dulashko Y; Liu X; Monberg EM; Taunay TF
    Opt Express; 2012 May; 20(10):10684-91. PubMed ID: 22565693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SNAP: fabrication of long coupled microresonator chains with sub-angstrom precision.
    Sumetsky M; Dulashko Y
    Opt Express; 2012 Dec; 20(25):27896-901. PubMed ID: 23262734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface nanoscale axial photonics.
    Sumetsky M; Fini JM
    Opt Express; 2011 Dec; 19(27):26470-85. PubMed ID: 22274232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A SNAP coupled microresonator delay line.
    Sumetsky M
    Opt Express; 2013 Jul; 21(13):15268-79. PubMed ID: 23842313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of SNAP devices: basic equations and comparison with the experiment.
    Sumetsky M
    Opt Express; 2012 Sep; 20(20):22537-54. PubMed ID: 23037403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rectangular SNAP microresonator fabricated with a femtosecond laser.
    Yu Q; Zaki S; Yang Y; Toropov N; Shu X; Sumetsky M
    Opt Lett; 2019 Nov; 44(22):5606-5609. PubMed ID: 31730118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable SNAP microresonators via internal ohmic heating.
    Vitullo DLP; Zaki S; Gardosi G; Mangan BJ; Windeler RS; Brodsky M; Sumetsky M
    Opt Lett; 2018 Sep; 43(17):4316-4319. PubMed ID: 30160716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microresonator devices lithographically introduced at the optical fiber surface.
    Toropov N; Zaki S; Vartanyan T; Sumetsky M
    Opt Lett; 2021 Apr; 46(7):1784-1787. PubMed ID: 33793543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of surface nanoscale axial photonics structures with a femtosecond laser.
    Shen F; Shu X; Zhang L; Sumetsky M
    Opt Lett; 2016 Jun; 41(12):2795-8. PubMed ID: 27304291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate fabrication of SNAP microresonators via a femtosecond laser with multidimensional optimized parameters.
    Yu Q; Zhang Z; Shu X
    Opt Express; 2021 Mar; 29(5):7724-7735. PubMed ID: 33726268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency comb generation in SNAP bottle resonators.
    Suchkov SV; Sumetsky M; Sukhorukov AA
    Opt Lett; 2017 Jun; 42(11):2149-2152. PubMed ID: 28569868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNAP microresonators introduced by strong bending of optical fibers.
    Bochek D; Toropov N; Vatnik I; Churkin D; Sumetsky M
    Opt Lett; 2019 Jul; 44(13):3218-3221. PubMed ID: 31259925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect.
    Pöllinger M; Rauschenbeutel A
    Opt Express; 2010 Aug; 18(17):17764-75. PubMed ID: 20721164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient postprocessing technique for fabricating surface nanoscale axial photonics microresonators with subangstrom precision by femtosecond laser.
    Yu Q; Du Y; Xu Z; Wang P; Zhang Z; Zhu Z; Cao H; Sumetsky M; Shu X
    Opt Lett; 2018 Dec; 43(23):5729-5732. PubMed ID: 30499979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward ultimate miniaturization of high Q silicon traveling-wave microresonators.
    Soltani M; Li Q; Yegnanarayanan S; Adibi A
    Opt Express; 2010 Sep; 18(19):19541-57. PubMed ID: 20940850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanobump microresonator.
    Kochkurov LA; Sumetsky M
    Opt Lett; 2015 Apr; 40(7):1430-3. PubMed ID: 25831350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow-bottle optical microresonators.
    Senthil Murugan G; Petrovich MN; Jung Y; Wilkinson JS; Zervas MN
    Opt Express; 2011 Oct; 19(21):20773-84. PubMed ID: 21997087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNAP structures fabricated by profile design of in-fiber inscribed regions with a femtosecond laser.
    Yu Q; Zhang Z; Shu X
    Opt Lett; 2021 Mar; 46(5):1005-1008. PubMed ID: 33649640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.