These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 22446217)
1. Redistributing energy flow and polarization of a focused azimuthally polarized beam with rotationally symmetric sector-shaped obstacles. Jiao X; Liu S; Wang Q; Gan X; Li P; Zhao J Opt Lett; 2012 Mar; 37(6):1041-3. PubMed ID: 22446217 [TBL] [Abstract][Full Text] [Related]
2. Redistributing the energy flow of a tightly focused radially polarized optical field by designing phase masks. Man Z; Bai Z; Zhang S; Li X; Li J; Ge X; Zhang Y; Fu S Opt Express; 2018 Sep; 26(18):23935-23944. PubMed ID: 30184888 [TBL] [Abstract][Full Text] [Related]
3. Controlling the polarization singularities of the focused azimuthally polarized beams. Zhang W; Liu S; Li P; Jiao X; Zhao J Opt Express; 2013 Jan; 21(1):974-83. PubMed ID: 23388991 [TBL] [Abstract][Full Text] [Related]
4. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam. Li X; Venugopalan P; Ren H; Hong M; Gu M Opt Lett; 2014 Oct; 39(20):5961-4. PubMed ID: 25361130 [TBL] [Abstract][Full Text] [Related]
5. Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy. Xue Y; Kuang C; Li S; Gu Z; Liu X Opt Express; 2012 Jul; 20(16):17653-66. PubMed ID: 23038317 [TBL] [Abstract][Full Text] [Related]
6. Tight focusing of a double-ring-shaped, azimuthally polarized beam. Tian B; Pu J Opt Lett; 2011 Jun; 36(11):2014-6. PubMed ID: 21633433 [TBL] [Abstract][Full Text] [Related]
7. Modulation mechanism of multi-azimuthal masks on the redistributions of focused azimuthally polarized beams. Li P; Liu S; Xie G; Peng T; Zhao J Opt Express; 2015 Mar; 23(6):7131-9. PubMed ID: 25837058 [TBL] [Abstract][Full Text] [Related]
8. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Kozawa Y; Sato S Opt Express; 2010 May; 18(10):10828-33. PubMed ID: 20588937 [TBL] [Abstract][Full Text] [Related]
9. How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. Khonina SN; Golub I J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2242-6. PubMed ID: 23201675 [TBL] [Abstract][Full Text] [Related]
11. Can a spatially anisotropic random scatterer produce a rotationally symmetric scattered momentum flow in the far zone? Ding Y Opt Express; 2024 Jan; 32(2):2856-2866. PubMed ID: 38297804 [TBL] [Abstract][Full Text] [Related]
12. Focusing field energy flow simulation of an azimuthally polarized Lorentz-Gaussian beam modulated by a concentric vortex phase mask. Zhou Z; Li J; Feng G; Li S; Lu C Appl Opt; 2023 Dec; 62(34):9125-9132. PubMed ID: 38108750 [TBL] [Abstract][Full Text] [Related]
14. Optical manipulation using highly focused alternate radially and azimuthally polarized beams modulated by a devil's lens. Liu Z; Jones PH J Opt Soc Am A Opt Image Sci Vis; 2016 Dec; 33(12):2501-2508. PubMed ID: 27906277 [TBL] [Abstract][Full Text] [Related]
15. Polarization-multiplexed multifocal arrays by a π-phase-step-modulated azimuthally polarized beam. Ren H; Li X; Gu M Opt Lett; 2014 Dec; 39(24):6771-4. PubMed ID: 25502993 [TBL] [Abstract][Full Text] [Related]