BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22446315)

  • 21. The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor.
    An Z; Mei B; Yuan WM; Leong SA
    EMBO J; 1997 Apr; 16(7):1742-50. PubMed ID: 9130718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The secretome of the maize pathogen Ustilago maydis.
    Mueller O; Kahmann R; Aguilar G; Trejo-Aguilar B; Wu A; de Vries RP
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S63-70. PubMed ID: 18456523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis.
    Cánovas D; Pérez-Martín J
    Fungal Genet Biol; 2009 Feb; 46(2):190-200. PubMed ID: 19038355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 14-3-3 regulates the G2/M transition in the basidiomycete Ustilago maydis.
    Mielnichuk N; Pérez-Martín J
    Fungal Genet Biol; 2008 Aug; 45(8):1206-15. PubMed ID: 18586536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis.
    Carbó N; Pérez-Martín J
    Fungal Genet Biol; 2008 Sep; 45(9):1315-27. PubMed ID: 18674629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The posttranscriptional machinery of Ustilago maydis.
    Feldbrügge M; Zarnack K; Vollmeister E; Baumann S; Koepke J; König J; Münsterkötter M; Mannhaupt G
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S40-6. PubMed ID: 18468465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple amino acid tags improve both expression and secretion of Candida antarctica lipase B in recombinant Escherichia coli.
    Kim SK; Park YC; Lee HH; Jeon ST; Min WK; Seo JH
    Biotechnol Bioeng; 2015 Feb; 112(2):346-55. PubMed ID: 25182473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/Pho85 family.
    Castillo-Lluva S; Alvarez-Tabarés I; Weber I; Steinberg G; Pérez-Martín J
    J Cell Sci; 2007 May; 120(Pt 9):1584-95. PubMed ID: 17405809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compensatory role for Rad52 during recombinational repair in Ustilago maydis.
    Kojic M; Mao N; Zhou Q; Lisby M; Holloman WK
    Mol Microbiol; 2008 Mar; 67(5):1156-68. PubMed ID: 18208529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity.
    Brundiek H; Saß S; Evitt A; Kourist R; Bornscheuer UT
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):141-50. PubMed ID: 22294433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis.
    Rodríguez-Kessler M; Baeza-Montañez L; García-Pedrajas MD; Tapia-Moreno A; Gold S; Jiménez-Bremont JF; Ruiz-Herrera J
    Microbiol Res; 2012 May; 167(5):270-82. PubMed ID: 22154329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complementing the intrinsic repertoire of Ustilago maydis for degradation of the pectin backbone polygalacturonic acid.
    Stoffels P; Müller MJ; Stachurski S; Terfrüchte M; Schröder S; Ihling N; Wierckx N; Feldbrügge M; Schipper K; Büchs J
    J Biotechnol; 2020 Jan; 307():148-163. PubMed ID: 31715206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA Live Imaging in the Model Microorganism Ustilago maydis.
    Zander S; Müntjes K; Feldbrügge M
    Methods Mol Biol; 2018; 1649():319-335. PubMed ID: 29130207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH.
    Martínez-Soto D; Ruiz-Herrera J
    Fungal Genet Biol; 2013; 58-59():116-25. PubMed ID: 23994320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of a polygalacturonase gene of Ustilago maydis and characterization of the encoded enzyme.
    Castruita-Domínguez JP; González-Hernández SE; Polaina J; Flores-Villavicencio LL; Alvarez-Vargas A; Flores-Martínez A; Ponce-Noyola P; Leal-Morales CA
    J Basic Microbiol; 2014 May; 54(5):340-9. PubMed ID: 23686704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. G proteins in Ustilago maydis: transmission of multiple signals?
    Regenfelder E; Spellig T; Hartmann A; Lauenstein S; Bölker M; Kahmann R
    EMBO J; 1997 Apr; 16(8):1934-42. PubMed ID: 9155019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ustilago maydis accumulates beta-carotene at levels determined by a retinal-forming carotenoid oxygenase.
    Estrada AF; Brefort T; Mengel C; Díaz-Sánchez V; Alder A; Al-Babili S; Avalos J
    Fungal Genet Biol; 2009 Oct; 46(10):803-13. PubMed ID: 19584000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterologous protein secretion by Candida utilis.
    Kunigo M; Buerth C; Tielker D; Ernst JF
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7357-68. PubMed ID: 23613034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism.
    Robledo-Briones M; Ruiz-Herrera J
    FEMS Yeast Res; 2013 Feb; 13(1):74-84. PubMed ID: 23167842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain.
    García-Pedrajas MD; Baeza-Montañez L; Gold SE
    Mol Plant Microbe Interact; 2010 Feb; 23(2):211-22. PubMed ID: 20064064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.