These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22446381)

  • 1. Fragmentation-tree density representation for crystallographic modelling of bound ligands.
    Langer GG; Evrard GX; Carolan CG; Lamzin VS
    J Mol Biol; 2012 Jun; 419(3-4):211-22. PubMed ID: 22446381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary image representation of a ligand binding site: its application to efficient sampling of a conformational ensemble.
    Sung E; Kim S; Shin W
    BMC Bioinformatics; 2010 May; 11():256. PubMed ID: 20478076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated ligand placement and refinement with a combined force field and shape potential.
    Wlodek S; Skillman AG; Nicholls A
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):741-9. PubMed ID: 16790930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated identification of crystallographic ligands using sparse-density representations.
    Carolan CG; Lamzin VS
    Acta Crystallogr D Biol Crystallogr; 2014 Jul; 70(Pt 7):1844-53. PubMed ID: 25004962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the protein-ligand interaction energy for model building and validation.
    Beshnova DA; Pereira J; Lamzin VS
    Acta Crystallogr D Struct Biol; 2017 Mar; 73(Pt 3):195-202. PubMed ID: 28291754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proper modelling of ligand binding requires an ensemble of bound and unbound states.
    Pearce NM; Krojer T; von Delft F
    Acta Crystallogr D Struct Biol; 2017 Mar; 73(Pt 3):256-266. PubMed ID: 28291761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling bound ligands in protein crystal structures.
    Zwart PH; Langer GG; Lamzin VS
    Acta Crystallogr D Biol Crystallogr; 2004 Dec; 60(Pt 12 Pt 1):2230-9. PubMed ID: 15572776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. qFit-ligand Reveals Widespread Conformational Heterogeneity of Drug-Like Molecules in X-Ray Electron Density Maps.
    van Zundert GCP; Hudson BM; de Oliveira SHP; Keedy DA; Fonseca R; Heliou A; Suresh P; Borrelli K; Day T; Fraser JS; van den Bedem H
    J Med Chem; 2018 Dec; 61(24):11183-11198. PubMed ID: 30457858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring ligand dynamics in protein crystal structures with ensemble refinement.
    Caldararu O; Ekberg V; Logan DT; Oksanen E; Ryde U
    Acta Crystallogr D Struct Biol; 2021 Aug; 77(Pt 8):1099-1115. PubMed ID: 34342282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated crystallographic ligand building using the medial axis transform of an electron-density isosurface.
    Aishima J; Russel DS; Guibas LJ; Adams PD; Brunger AT
    Acta Crystallogr D Biol Crystallogr; 2005 Oct; 61(Pt 10):1354-63. PubMed ID: 16204887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of Protein-Ligand Crystal Structure Models: Small Molecule and Peptide Ligands.
    Pozharski E; Deller MC; Rupp B
    Methods Mol Biol; 2017; 1607():611-625. PubMed ID: 28573591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of ligands in macromolecular structures determined by X-ray crystallography.
    Smart OS; Horský V; Gore S; Svobodová Vařeková R; Bendová V; Kleywegt GJ; Velankar S
    Acta Crystallogr D Struct Biol; 2018 Mar; 74(Pt 3):228-236. PubMed ID: 29533230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Docking ligands onto binding site representations derived from proteins built by homology modelling.
    Schafferhans A; Klebe G
    J Mol Biol; 2001 Mar; 307(1):407-27. PubMed ID: 11243828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand identification using electron-density map correlations.
    Terwilliger TC; Adams PD; Moriarty NW; Cohn JD
    Acta Crystallogr D Biol Crystallogr; 2007 Jan; 63(Pt 1):101-7. PubMed ID: 17164532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modelling prediction of ligand binding site flexibility.
    Yang AY; Källblad P; Mancera RL
    J Comput Aided Mol Des; 2004 Apr; 18(4):235-50. PubMed ID: 15562988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation.
    Brylinski M; Skolnick J
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):129-34. PubMed ID: 18165317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting conserved water-mediated and polar ligand interactions in proteins using a K-nearest-neighbors genetic algorithm.
    Raymer ML; Sanschagrin PC; Punch WF; Venkataraman S; Goodman ED; Kuhn LA
    J Mol Biol; 1997 Jan; 265(4):445-64. PubMed ID: 9034363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML; Cole JC; Watson P; Gillet V; Willett P
    J Mol Biol; 2001 Mar; 307(3):841-59. PubMed ID: 11273705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CORES: an automated method for generating three-dimensional models of protein/ligand complexes.
    Hare BJ; Walters WP; Caron PR; Bemis GW
    J Med Chem; 2004 Sep; 47(19):4731-40. PubMed ID: 15341488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a genetic algorithm for flexible docking.
    Jones G; Willett P; Glen RC; Leach AR; Taylor R
    J Mol Biol; 1997 Apr; 267(3):727-48. PubMed ID: 9126849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.