These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 22446454)

  • 1. Biomechanical effects of cranioplasty for defects using autogenous calvarial bone.
    Beainy F; El Amm C; Abousleimane Y; Mapstone T; Beidas O; Workman M
    J Craniofac Surg; 2012 Mar; 23(2):e152-5. PubMed ID: 22446454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical investigation of naso-orbitoethmoid trauma by finite element analysis.
    Huempfner-Hierl H; Schaller A; Hemprich A; Hierl T
    Br J Oral Maxillofac Surg; 2014 Nov; 52(9):850-3. PubMed ID: 25138612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative finite element analysis of skull mechanical properties following parietal bone graft harvesting in adults.
    Haen P; Dubois G; Goudot P; Schouman T
    J Craniomaxillofac Surg; 2018 Feb; 46(2):329-337. PubMed ID: 29233699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of split calvarial graft in reconstruction of craniofacial defects.
    Sahoo NK; Rangan M
    J Craniofac Surg; 2012 Jul; 23(4):e326-31. PubMed ID: 22801169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical mechanisms of orbital wall fractures - a transient finite element analysis.
    Schaller A; Huempfner-Hierl H; Hemprich A; Hierl T
    J Craniomaxillofac Surg; 2013 Dec; 41(8):710-7. PubMed ID: 22417768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maxillofacial fractures and craniocerebral injuries - stress propagation from face to neurocranium in a finite element analysis.
    Huempfner-Hierl H; Schaller A; Hierl T
    Scand J Trauma Resusc Emerg Med; 2015 Apr; 23():35. PubMed ID: 25896502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Osteoplasty of osseous defects of the frontal bone and orbital roof--indications, technique and results].
    Mohr C; Seifert V; Schettler D
    Fortschr Kiefer Gesichtschir; 1994; 39():43-6. PubMed ID: 8088668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An imaging-based computational and experimental study of skull fracture: finite element model development.
    Bandak FA; Vander Vorst MJ; Stuhmiller LM; Mlakar PF; Chilton WE; Stuhmiller JH
    J Neurotrauma; 1995 Aug; 12(4):679-88. PubMed ID: 8683619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new biomechanically-based criterion for lateral skull fracture.
    Vander Vorst M; Chan P; Zhang J; Yoganandan N; Pintar F
    Annu Proc Assoc Adv Automot Med; 2004; 48():181-95. PubMed ID: 15319125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biomechanics analysis of the impact of maxillofacial injury on skull base damage].
    Wu P; Yang ZY; Liu Y; Li Y; Tan YH
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Aug; 51(8):480-5. PubMed ID: 27511039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pediatric skull fractures: the need for surgical intervention, characteristics, complications, and outcomes.
    Bonfield CM; Naran S; Adetayo OA; Pollack IF; Losee JE
    J Neurosurg Pediatr; 2014 Aug; 14(2):205-11. PubMed ID: 24905840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orbital stress analysis: part II: design and fixation of autogenous bone graft used to repair orbital blowout fracture.
    Al-Sukhun J; Penttilä H; Ashammakhi N
    J Craniofac Surg; 2011 Jul; 22(4):1294-8. PubMed ID: 21772199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical investigation of the supraorbital arch - a transient FEA study on the impact of physical blows.
    Huempfner-Hierl H; Schaller A; Hierl T
    Head Face Med; 2014 Apr; 10():13. PubMed ID: 24745339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infant skull fractures: Accident or abuse?: Evidences from biomechanical analysis using finite element head models.
    Li X; Sandler H; Kleiven S
    Forensic Sci Int; 2019 Jan; 294():173-182. PubMed ID: 30529991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post- traumatic compound elevated fracture of skull simulating a formal craniotomy.
    Borkar SA; Sinha S; Sharma BS
    Turk Neurosurg; 2009 Jan; 19(1):103-5. PubMed ID: 19263365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical properties of calvarium prosthesis.
    Park HK; Dujovny M; Agner C; Diaz FG
    Neurol Res; 2001; 23(2-3):267-76. PubMed ID: 11320607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Use of autogenous cranial bone grafts for orbital floor reconstruction].
    Zhu Z; Stevens MR; Wu H
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2001 Sep; 17(5):294-6. PubMed ID: 11767709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orbital stress analysis, Part IV: Use of a "stiffness-graded" biodegradable implants to repair orbital blow-out fracture.
    Al-Sukhun J; Penttilä H; Ashammakhi N
    J Craniofac Surg; 2012 Jan; 23(1):126-30. PubMed ID: 22337388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element method for analysis of stresses arising in the skull after external loading in cranio-orbital fractures.
    Wanyura H; Kowalczyk P; Bossak M; Samolczyk-Wanyura D; Stopa Z
    Neurol Neurochir Pol; 2012; 46(4):344-50. PubMed ID: 23023433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Reconstruction of the frontoorbital frame using split-thickness calvarial bone grafts].
    Hendus J; Draf W; Bockmühl U
    Laryngorhinootologie; 2005 Dec; 84(12):899-904. PubMed ID: 16358199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.