BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 22446767)

  • 1. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications.
    Gopi D; Nithiya S; Shinyjoy E; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():194-200. PubMed ID: 22446767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications.
    Chen XB; Li YC; Du Plessis J; Hodgson PD; Wen C
    Acta Biomater; 2009 Jun; 5(5):1808-20. PubMed ID: 19223253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers.
    Lin K; Chang J; Cheng R
    Acta Biomater; 2007 Mar; 3(2):271-6. PubMed ID: 17234465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization, physicochemical properties and biocompatibility of La-incorporated apatites.
    Guo DG; Wang AH; Han Y; Xu KW
    Acta Biomater; 2009 Nov; 5(9):3512-23. PubMed ID: 19477306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol).
    Degirmenbasi N; Kalyon DM; Birinci E
    Colloids Surf B Biointerfaces; 2006 Mar; 48(1):42-9. PubMed ID: 16490348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering.
    Nga NK; Giang LT; Huy TQ; Viet PH; Migliaresi C
    Colloids Surf B Biointerfaces; 2014 Apr; 116():666-73. PubMed ID: 24274938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization.
    Kumta PN; Sfeir C; Lee DH; Olton D; Choi D
    Acta Biomater; 2005 Jan; 1(1):65-83. PubMed ID: 16701781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral characterization of apatite formation on poly(2-hydroxyethylmethacrylate)-TiO2 nanocomposite film prepared by sol-gel process.
    Prashantha K; Rashmi BJ; Venkatesha TV; Lee JH
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Oct; 65(2):340-4. PubMed ID: 16503415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method.
    Poinern GE; Brundavanam RK; Mondinos N; Jiang ZT
    Ultrason Sonochem; 2009 Apr; 16(4):469-74. PubMed ID: 19232507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration.
    Raucci MG; D'Antò V; Guarino V; Sardella E; Zeppetelli S; Favia P; Ambrosio L
    Acta Biomater; 2010 Oct; 6(10):4090-9. PubMed ID: 20417736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.
    Aina V; Bergandi L; Lusvardi G; Malavasi G; Imrie FE; Gibson IR; Cerrato G; Ghigo D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1132-42. PubMed ID: 23827552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic characterization of porous nanohydroxyapatite synthesized by a novel amino acid soft solution freezing method.
    Gopi D; Indira J; Prakash VC; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):282-4. PubMed ID: 19525142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.
    Gopi D; Indira J; Kavitha L; Sekar M; Mudali UK
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():131-4. PubMed ID: 22472129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer.
    Rhee SH
    J Biomed Mater Res A; 2003 Dec; 67(4):1131-8. PubMed ID: 14624498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic.
    Lu W; Duan W; Guo Y; Ning C
    J Biomater Appl; 2012 Feb; 26(6):637-50. PubMed ID: 20876633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique.
    Poursamar SA; Azami M; Mozafari M
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):310-6. PubMed ID: 21310596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs.
    Dekker RJ; de Bruijn JD; Stigter M; Barrere F; Layrolle P; van Blitterswijk CA
    Biomaterials; 2005 Sep; 26(25):5231-9. PubMed ID: 15792550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers.
    Li K; Wang J; Liu X; Xiong X; Liu H
    Carbohydr Polym; 2012 Nov; 90(4):1573-81. PubMed ID: 22944418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.