BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 22446767)

  • 41. Effect of the solution flow rate on the in vitro bioactivity of 2.5CaO x 2SiO(2) glass.
    Luciani G; Costantini A; Silvestri B; Cajafa M; Colella M; Branda F
    J Biomed Mater Res A; 2007 Mar; 80(3):592-601. PubMed ID: 17031823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of pH on the structural evolution of accelerated biomimetic apatite.
    Chou YF; Chiou WA; Xu Y; Dunn JC; Wu BM
    Biomaterials; 2004 Oct; 25(22):5323-31. PubMed ID: 15110483
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functionally gradient bonelike hydroxyapatite coating on a titanium metal substrate created by a discharging method in HBSS without organic molecules.
    Shibata Y; Takashima H; Yamamoto H; Miyazaki T
    Int J Oral Maxillofac Implants; 2004; 19(2):177-83. PubMed ID: 15101587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and characterization of hydroxyapatite whiskers by hydrothermal homogeneous precipitation using acetamide.
    Zhang H; Darvell BW
    Acta Biomater; 2010 Aug; 6(8):3216-22. PubMed ID: 20149902
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of nano-hydroxyapatite/collagen/osteonectin composites for bone graft applications.
    Liao S; Ngiam M; Chan CK; Ramakrishna S
    Biomed Mater; 2009 Apr; 4(2):025019. PubMed ID: 19349652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural properties of silver doped hydroxyapatite and their biocompatibility.
    Ciobanu CS; Iconaru SL; Pasuk I; Vasile BS; Lupu AR; Hermenean A; Dinischiotu A; Predoi D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1395-402. PubMed ID: 23827587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC).
    Moshaverinia A; Ansari S; Moshaverinia M; Roohpour N; Darr JA; Rehman I
    Acta Biomater; 2008 Mar; 4(2):432-40. PubMed ID: 17921077
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment.
    Kim HM; Himeno T; Kawashita M; Kokubo T; Nakamura T
    J R Soc Interface; 2004 Nov; 1(1):17-22. PubMed ID: 16849149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Corrosion and biocompatibility examination of multi-element modified calcium phosphate bioceramic layers.
    Furko M; Bella ED; Fini M; Balázsi C
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():381-388. PubMed ID: 30573262
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate.
    Szubert M; Adamska K; Szybowicz M; Jesionowski T; Buchwald T; Voelkel A
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():236-44. PubMed ID: 24268255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transformation of nacre coatings into apatite coatings in phosphate buffer solution at low temperature.
    Guo Y; Zhou Y
    J Biomed Mater Res A; 2008 Aug; 86(2):510-21. PubMed ID: 17994555
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings.
    Bhadang KA; Gross KA
    Biomaterials; 2004 Sep; 25(20):4935-45. PubMed ID: 15109854
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strontium doped hydroxyapatite from Mercenaria clam shells: Synthesis, mechanical and bioactivity study.
    Pal A; Nasker P; Paul S; Roy Chowdhury A; Sinha A; Das M
    J Mech Behav Biomed Mater; 2019 Feb; 90():328-336. PubMed ID: 30399562
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrothermal synthesis and biocompatibility of hydroxyapatite nanorods.
    Li K; Tjong SC
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10444-8. PubMed ID: 22408923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability.
    Oyane A; Uchida M; Yokoyama Y; Choong C; Triffitt J; Ito A
    J Biomed Mater Res A; 2005 Oct; 75(1):138-45. PubMed ID: 16044403
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering.
    Nga NK; Thuy Chau NT; Viet PH
    Colloids Surf B Biointerfaces; 2018 Dec; 172():769-778. PubMed ID: 30266011
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite--an in vitro study.
    Lakshmi R; Sasikumar S
    Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):129-36. PubMed ID: 26491314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.