BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 22446821)

  • 1. Construction of large signaling pathways using an adaptive perturbation approach with phosphoproteomic data.
    Melas IN; Mitsos A; Messinis DE; Weiss TS; Rodriguez JS; Alexopoulos LG
    Mol Biosyst; 2012 Apr; 8(5):1571-84. PubMed ID: 22446821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoproteomic approaches to elucidate cellular signaling networks.
    Schmelzle K; White FM
    Curr Opin Biotechnol; 2006 Aug; 17(4):406-14. PubMed ID: 16806894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting homologous signaling pathways using machine learning.
    Bostan B; Greiner R; Szafron D; Lu P
    Bioinformatics; 2009 Nov; 25(22):2913-20. PubMed ID: 19736253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of signaling pathways in chondrocytes based on phosphoproteomic and cytokine release data.
    Melas IN; Chairakaki AD; Chatzopoulou EI; Messinis DE; Katopodi T; Pliaka V; Samara S; Mitsos A; Dailiana Z; Kollia P; Alexopoulos LG
    Osteoarthritis Cartilage; 2014 Mar; 22(3):509-18. PubMed ID: 24457104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data.
    Mitsos A; Melas IN; Siminelakis P; Chairakaki AD; Saez-Rodriguez J; Alexopoulos LG
    PLoS Comput Biol; 2009 Dec; 5(12):e1000591. PubMed ID: 19997482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational approach for ordering signal transduction pathway components from genomics and proteomics Data.
    Liu Y; Zhao H
    BMC Bioinformatics; 2004 Oct; 5():158. PubMed ID: 15504238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic strategies to characterize signaling pathways.
    Harsha HC; Pinto SM; Pandey A
    Methods Mol Biol; 2013; 1007():359-77. PubMed ID: 23666735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A linear programming computational framework integrates phosphor-proteomics and prior knowledge to predict drug efficacy.
    Ji Z; Wang B; Yan K; Dong L; Meng G; Shi L
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):127. PubMed ID: 29322918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping in vivo signal transduction defects by phosphoproteomics.
    Stasyk T; Huber LA
    Trends Mol Med; 2012 Jan; 18(1):43-51. PubMed ID: 22154696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative pathway approach for automating analysis and validation of cell perturbation networks and design of perturbation experiments.
    Gong Y; Zhang Z
    Ann N Y Acad Sci; 2007 Dec; 1115():267-85. PubMed ID: 17925355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of signaling pathways and identification of drug effects on the liver cancer cell HepG2.
    Alexopoulos LG; Melas IN; Chairakaki AD; Saez-Rodriguez J; Mitsos A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6717-20. PubMed ID: 21096084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for the processing and downstream analysis of phosphoproteomic data with PhosR.
    Kim HJ; Kim T; Xiao D; Yang P
    STAR Protoc; 2021 Jun; 2(2):100585. PubMed ID: 34151303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor.
    Zhou H; Elisma F; Denis NJ; Wright TG; Tian R; Zhou H; Hou W; Zou H; Figeys D
    J Proteome Res; 2010 Mar; 9(3):1279-88. PubMed ID: 20067319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor.
    Ståhl S; Branca RM; Efazat G; Ruzzene M; Zhivotovsky B; Lewensohn R; Viktorsson K; Lehtiö J
    J Proteome Res; 2011 May; 10(5):2566-78. PubMed ID: 21413766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways.
    Yan GR; Xiao CL; He GW; Yin XF; Chen NP; Cao Y; He QY
    Proteomics; 2010 Mar; 10(5):976-86. PubMed ID: 20049867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional proteomics to identify critical proteins in signal transduction pathways.
    Yan GR; He QY
    Amino Acids; 2008 Aug; 35(2):267-74. PubMed ID: 17704892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways.
    Kosako H; Nagano K
    Expert Rev Proteomics; 2011 Feb; 8(1):81-94. PubMed ID: 21329429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometric tools for systematic analysis of protein phosphorylation.
    St-Denis N; Gingras AC
    Prog Mol Biol Transl Sci; 2012; 106():3-32. PubMed ID: 22340712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteomics in analyzing signaling pathways.
    Mukherji M
    Expert Rev Proteomics; 2005 Jan; 2(1):117-28. PubMed ID: 15966857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.
    Omranian N; Mueller-Roeber B; Nikoloski Z
    Mol Biosyst; 2012 Apr; 8(4):1121-7. PubMed ID: 22327945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.