These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 22447295)
1. Rodent models of HAND and drug abuse: exogenous administration of viral protein(s) and cocaine. Yao H; Buch S J Neuroimmune Pharmacol; 2012 Jun; 7(2):341-51. PubMed ID: 22447295 [TBL] [Abstract][Full Text] [Related]
2. Intravenous cocaine abuse: a rodent model for potential interactions with HIV proteins. Bansal AK; Mactutus CF; Nath A; Anderson C; Booze RM Adv Exp Med Biol; 2001; 493():241-5. PubMed ID: 11727772 [No Abstract] [Full Text] [Related]
3. Cocaine and HIV-1 Tat disrupt cholesterol homeostasis in astrocytes: Implications for HIV-associated neurocognitive disorders in cocaine user patients. Cotto B; Natarajaseenivasan K; Ferrero K; Wesley L; Sayre M; Langford D Glia; 2018 Apr; 66(4):889-902. PubMed ID: 29330881 [TBL] [Abstract][Full Text] [Related]
4. HIV-1 transgenic rats display an increase in [(3)H]dopamine uptake in the prefrontal cortex and striatum. Zhu J; Yuan Y; Midde NM; Gomez AM; Sun WL; Quizon PM; Zhan CG J Neurovirol; 2016 Jun; 22(3):282-92. PubMed ID: 26501780 [TBL] [Abstract][Full Text] [Related]
5. Differential regulation of neurotoxin in HIV clades: role of cocaine and methamphetamine. Nair MP; Samikkannu T Curr HIV Res; 2012 Jul; 10(5):429-34. PubMed ID: 22591367 [TBL] [Abstract][Full Text] [Related]
6. Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Bansal AK; Mactutus CF; Nath A; Maragos W; Hauser KF; Booze RM Brain Res; 2000 Oct; 879(1-2):42-9. PubMed ID: 11011004 [TBL] [Abstract][Full Text] [Related]
7. Dysregulation of Neuronal Cholesterol Homeostasis upon Exposure to HIV-1 Tat and Cocaine Revealed by RNA-Sequencing. Mohseni Ahooyi T; Shekarabi M; Torkzaban B; Langford TD; Burdo TH; Gordon J; Datta PK; Amini S; Khalili K Sci Rep; 2018 Nov; 8(1):16300. PubMed ID: 30390000 [TBL] [Abstract][Full Text] [Related]
8. The human immunodeficiency virus-1-associated protein, Tat1-86, impairs dopamine transporters and interacts with cocaine to reduce nerve terminal function: a no-net-flux microdialysis study. Ferris MJ; Frederick-Duus D; Fadel J; Mactutus CF; Booze RM Neuroscience; 2009 Apr; 159(4):1292-9. PubMed ID: 19344635 [TBL] [Abstract][Full Text] [Related]
9. Menin mediates Tat-induced neuronal apoptosis in brain frontal cortex of SIV-infected macaques and in Tat-treated cells. Wang J; Zhang Y; Xu Q; Qiu J; Zheng H; Ye X; Xue Y; Yin Y; Zhang Z; Liu Y; Hao Y; Wei Q; Wang W; Mori K; Izumo S; Kubota R; Shao Y; Xing HQ Oncotarget; 2017 Mar; 8(11):18082-18094. PubMed ID: 28178646 [TBL] [Abstract][Full Text] [Related]
10. A central role for glial CCR5 in directing the neuropathological interactions of HIV-1 Tat and opiates. Kim S; Hahn YK; Podhaizer EM; McLane VD; Zou S; Hauser KF; Knapp PE J Neuroinflammation; 2018 Oct; 15(1):285. PubMed ID: 30305110 [TBL] [Abstract][Full Text] [Related]
11. Cortical consequences of HIV-1 Tat exposure in rats are enhanced by chronic cocaine. Wayman WN; Chen L; Persons AL; Napier TC Curr HIV Res; 2015; 13(1):80-7. PubMed ID: 25760043 [TBL] [Abstract][Full Text] [Related]
12. Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. Chang L; Wang GJ; Volkow ND; Ernst T; Telang F; Logan J; Fowler JS Neuroimage; 2008 Aug; 42(2):869-78. PubMed ID: 18579413 [TBL] [Abstract][Full Text] [Related]
13. Role of Sigma Receptor in Cocaine-Mediated Induction of Glial Fibrillary Acidic Protein: Implications for HAND. Yang L; Yao H; Chen X; Cai Y; Callen S; Buch S Mol Neurobiol; 2016 Mar; 53(2):1329-1342. PubMed ID: 25631712 [TBL] [Abstract][Full Text] [Related]
14. HIV-1 gp120 and drugs of abuse: interactions in the central nervous system. Silverstein PS; Shah A; Weemhoff J; Kumar S; Singh DP; Kumar A Curr HIV Res; 2012 Jul; 10(5):369-83. PubMed ID: 22591361 [TBL] [Abstract][Full Text] [Related]
15. HIV-1 Tat neurotoxicity: a model of acute and chronic exposure, and neuroprotection by gene delivery of antioxidant enzymes. Agrawal L; Louboutin JP; Reyes BA; Van Bockstaele EJ; Strayer DS Neurobiol Dis; 2012 Feb; 45(2):657-70. PubMed ID: 22036626 [TBL] [Abstract][Full Text] [Related]
16. Innate differences between simian-human immunodeficiency virus (SHIV)(KU-2)-infected rhesus and pig-tailed macaques in development of neurological disease. Buch SJ; Villinger F; Pinson D; Hou Y; Adany I; Li Z; Dalal R; Raghavan R; Kumar A; Narayan O Virology; 2002 Mar; 295(1):54-62. PubMed ID: 12033765 [TBL] [Abstract][Full Text] [Related]
17. Hyperdopaminergic tone in HIV-1 protein treated rats and cocaine sensitization. Ferris MJ; Frederick-Duus D; Fadel J; Mactutus CF; Booze RM J Neurochem; 2010 Nov; 115(4):885-96. PubMed ID: 20796175 [TBL] [Abstract][Full Text] [Related]
18. Cocaine and HIV-1 interplay in CNS: cellular and molecular mechanisms. Buch S; Yao H; Guo M; Mori T; Mathias-Costa B; Singh V; Seth P; Wang J; Su TP Curr HIV Res; 2012 Jul; 10(5):425-8. PubMed ID: 22591366 [TBL] [Abstract][Full Text] [Related]
19. Didehydro-cortistatin A inhibits HIV-1 Tat mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice. Mediouni S; Jablonski J; Paris JJ; Clementz MA; Thenin-Houssier S; McLaughlin JP; Valente ST Curr HIV Res; 2015; 13(1):64-79. PubMed ID: 25613133 [TBL] [Abstract][Full Text] [Related]
20. Functional analyses of natural killer cells in macaques infected with neurovirulent simian immunodeficiency virus. Shieh TM; Carter DL; Blosser RL; Mankowski JL; Zink MC; Clements JE J Neurovirol; 2001 Feb; 7(1):11-24. PubMed ID: 11519478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]