These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 22447312)
1. Comparison of earthworm and chemical assays of the bioavailability of aged 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane, and heavy metals in orchard soils. Gaw S; Northcott G; Kim N; Wilkins A; Jensen J Environ Toxicol Chem; 2012 Jun; 31(6):1306-16. PubMed ID: 22447312 [TBL] [Abstract][Full Text] [Related]
2. Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China. Huang H; Zhang Y; Chen W; Chen W; Yuen DA; Ding Y; Chen Y; Mao Y; Qi S Environ Pollut; 2018 Apr; 235():560-570. PubMed ID: 29329097 [TBL] [Abstract][Full Text] [Related]
3. Preliminary evidence that copper inhibits the degradation of DDT to DDE in pip and stonefruit orchard soils in the Auckland region, New Zealand. Gaw SK; Palmer G; Kim ND; Wilkins AL Environ Pollut; 2003; 122(1):1-5. PubMed ID: 12535590 [TBL] [Abstract][Full Text] [Related]
4. Transfer of DDT and metabolites from fruit orchard soils to American robins (Turdus migratorius) twenty years after agricultural use of DDT in Canada. Harris ML; Wilson LK; Elliott JE; Bishop CA; Tomlin AD; Henning KV Arch Environ Contam Toxicol; 2000 Aug; 39(2):205-20. PubMed ID: 10871424 [TBL] [Abstract][Full Text] [Related]
5. Determination of lead, cadmium, and persistent organic pollutants in wild and orchard-farm-grown fruit in northeastern Poland. Wieczorek J; Pietrzak M; Osowski A; Wieczorek Z J Toxicol Environ Health A; 2010; 73(17-18):1236-43. PubMed ID: 20706949 [TBL] [Abstract][Full Text] [Related]
6. The source of DDT and its metabolites contamination in Turkish agricultural soils. Turgut C; Cutright TJ; Mermer S; Atatanir L; Turgut N; Usluy M; Erdogan O Environ Monit Assess; 2013 Feb; 185(2):1087-93. PubMed ID: 22552491 [TBL] [Abstract][Full Text] [Related]
7. Using matrix solid-phase microextraction (matrix-SPME) to estimate bioavailability of DDTs in soil to both earthworm and vegetables. Fang H; Chu X; Wang X; Pang G; Yu Y Arch Environ Contam Toxicol; 2010 Jan; 58(1):62-70. PubMed ID: 19418090 [TBL] [Abstract][Full Text] [Related]
8. Residues of DDTs and their spatial distribution characteristics in soils from the Yangtze River Delta, China. Li Q; Zhang H; Luo Y; Song J; Wu L; Ma J Environ Toxicol Chem; 2008 Jan; 27(1):24-30. PubMed ID: 18092878 [TBL] [Abstract][Full Text] [Related]
9. Uptake of SigmaDDT, arsenic, cadmium, copper, and lead by lettuce and radish grown in contaminated horticultural soils. Gaw SK; Kim ND; Northcott GL; Wilkins AL; Robinson G J Agric Food Chem; 2008 Aug; 56(15):6584-93. PubMed ID: 18624413 [TBL] [Abstract][Full Text] [Related]
10. Extraction of DDT [1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane] and its metabolites DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene] and DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)-ethane]) from aged contaminated soil. Fitzpatrick LJ; Dean JR; Comber MH; Harradine K; Evans KP J Chromatogr A; 2000 Apr; 874(2):257-64. PubMed ID: 10817364 [TBL] [Abstract][Full Text] [Related]
11. Enhancement effect of two ecological earthworm species (Eisenia foetida and Amynthas robustus E. Perrier) on removal and degradation processes of soil DDT. Lin Z; Li XM; Li YT; Huang DY; Dong J; Li FB J Environ Monit; 2012 May; 14(6):1551-8. PubMed ID: 22584803 [TBL] [Abstract][Full Text] [Related]
12. Effect of species differences, pollutant concentration, and residence time in soil on the bioaccumulation of 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene by three earthworm species. Kelsey JW; Colino A; White JC Environ Toxicol Chem; 2005 Mar; 24(3):703-8. PubMed ID: 15779772 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of movement of organochlorine pesticides from soils to cows via forages. Willett LB; O'Donnell AF; Durst HI; Kurz MM J Dairy Sci; 1993 Jun; 76(6):1635-44. PubMed ID: 8326032 [TBL] [Abstract][Full Text] [Related]
14. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Li L; Wu H; van Gestel CA; Peijnenburg WJ; Allen HE Environ Pollut; 2014 May; 188():144-52. PubMed ID: 24583712 [TBL] [Abstract][Full Text] [Related]
15. Metabolism and distribution of p,p'-DDT during flight of the white-crowned sparrow, Zonotrichia leucophrys. Scollon EJ; Carr JA; Rintoul DA; McMurry ST; Cobb GP Environ Toxicol Chem; 2012 Feb; 31(2):336-46. PubMed ID: 22045600 [TBL] [Abstract][Full Text] [Related]
16. Continuing Persistence and Biomagnification of DDT and Metabolites in Northern Temperate Fruit Orchard Avian Food Chains. Kesic R; Elliott JE; Fremlin KM; Gauthier L; Drouillard KG; Bishop CA Environ Toxicol Chem; 2021 Dec; 40(12):3379-3391. PubMed ID: 34559907 [TBL] [Abstract][Full Text] [Related]
17. Detection of DDT and its metabolites in two estuaries of South China using a SPME-based device: first report of p,p'-DDMU in water column. Xing YN; Guo Y; Xie M; Shen RL; Zeng EY Environ Pollut; 2009 Apr; 157(4):1382-7. PubMed ID: 19117651 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic biodegradation of DDT residues (DDT, DDD, and DDE) in estuarine sediment. Huang HJ; Liu SM; Kuo CE J Environ Sci Health B; 2001 May; 36(3):273-88. PubMed ID: 11411851 [TBL] [Abstract][Full Text] [Related]
19. Temporal and latitudinal trends of p,p'-DDE in eggs and carcasses of North American birds from 1980 to 2005. Mora MA; Durgin B; Hudson LB; Jones E Environ Toxicol Chem; 2016 Jun; 35(6):1340-8. PubMed ID: 26753749 [TBL] [Abstract][Full Text] [Related]
20. The effect of farming techniques on degradation of DDT in historical cotton farms. Barr KJ; Panuwet P; Saikawa E Environ Pollut; 2024 Jun; 351():123961. PubMed ID: 38614425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]