BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22447347)

  • 1. Influence of the shape of intracellular potentials on the morphology of single-fiber extracellular potentials in human muscle fibers.
    Rodriguez-Falces J; Navallas J; Gila L; Malanda A; Dimitrova NA
    Med Biol Eng Comput; 2012 May; 50(5):447-60. PubMed ID: 22447347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The morphology of single muscle fibre potentials - Part I: simulation study of the distortion introduced by the distant-interfering potentials.
    Rodriguez-Falces J; Gila L; Dimitrova NA
    J Electromyogr Kinesiol; 2013 Feb; 23(1):14-23. PubMed ID: 22863372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of changes in the shape of the intracellular action potential on the peak-to-peak ratio of single muscle fibre potentials.
    Rodríguez-Falces J; Navallas J; Gila L; Latasa I; Malanda A
    J Electromyogr Kinesiol; 2012 Feb; 22(1):88-97. PubMed ID: 21906960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The morphology of single muscle fibre potentials - Part II: experimental findings.
    Rodriguez-Falces J; Gila L; Dimitrova NA
    J Electromyogr Kinesiol; 2013 Feb; 23(1):24-32. PubMed ID: 22868038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between the rise-time of single-fibre action potentials and radial distance in human muscle fibres.
    Rodríguez J; Navallas J; Gila L; Rodríguez I; Malanda A
    Clin Neurophysiol; 2010 Feb; 121(2):214-20. PubMed ID: 19955017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the duration of intracellular action potentials in muscle fibres from single-fibre extracellular potentials.
    Rodríguez J; Navallas J; Gila L; Dimitrova NA; Malanda A
    J Neurosci Methods; 2011 Apr; 197(2):221-30. PubMed ID: 21396959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling fibrillation potentials--analysis of time parameters in the muscle intracellular action potential.
    Rodríguez Falces J; Trigueros AM; Useros LG; Carreño IR; Irujo JN
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1361-70. PubMed ID: 17694856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical analysis of SFAP convolutional models.
    Falces JR; Trigueros AM; Useros LG; Carreño IR; Irujo JN
    IEEE Trans Biomed Eng; 2005 May; 52(5):769-83. PubMed ID: 15887526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of changes in intracellular action potential on potentials recorded by single-fiber, macro, and belly-tendon electrodes.
    Arabadzhiev TI; Dimitrov GV; Chakarov VE; Dimitrov AG; Dimitrova NA
    Muscle Nerve; 2008 Jun; 37(6):700-12. PubMed ID: 18506714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the relationship between the rise-time and the amplitude of single-fibre potentials in human muscles.
    Rodríguez-Falces J; Navallas J; Gila L; Rodríguez I; Malanda A
    J Electromyogr Kinesiol; 2010 Dec; 20(6):1249-58. PubMed ID: 20692181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The peak-to-peak ratio of single-fibre potentials is little influenced by changes in the electrode positions close to the muscle fibre.
    Rodríguez J; Navallas J; Gila L; Rodríguez I; Malanda A
    J Electromyogr Kinesiol; 2011 Jun; 21(3):423-32. PubMed ID: 20451410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-tendon single-fiber electromyography in patients with myopathy.
    Sirin NG; Mehdikhanova L; Bekdik Sirinocak P; Arkali NB; Baslo MB; Kocasoy Orhan E
    Neurophysiol Clin; 2022 Apr; 52(2):174-177. PubMed ID: 35296384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle Fiber Diameter and Density Alterations after Stroke Examined by Single-Fiber EMG.
    Huang C; Yao B; Li X; Li S; Zhou P
    Neural Plast; 2021; 2021():3045990. PubMed ID: 34434227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the peak-to-peak ratio of extracellular potentials in the proximity of excitable fibres.
    Rodriguez-Falces J; Malanda A; Gila L; Rodriguez I; Navallas J
    J Electromyogr Kinesiol; 2010 Oct; 20(5):868-78. PubMed ID: 19709903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling fibrillation potentials--a new analytical description for the muscle intracellular action potential.
    Rodríguez Falces J; Malanda Trigueros A; Gila Useros L; Rodríguez Carreño I; Navallas Irujo J
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):581-92. PubMed ID: 16602564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of triggering potential on calculations of jitter in single-fiber EMG.
    Baslo MB; Yildiz N; Yalinay P; Ertaş M
    Muscle Nerve; 2002 Jun; 25(6):906-8. PubMed ID: 12115982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of the muscle-fiber intracellular action potential waveform, including the slow repolarization phase.
    McGill KC; Lateva ZC
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1480-3. PubMed ID: 11759929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular action potential generation and extinction strongly affect the sensitivity of M-wave characteristic frequencies to changes in the peripheral parameters with muscle fatigue.
    Arabadzhiev TI; Dimitrov GV; Dimitrova NA
    J Electromyogr Kinesiol; 2005 Apr; 15(2):159-69. PubMed ID: 15664146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of spatially filtered signals produced by a motor unit comprising muscle fibres with non-uniform propagation.
    Dimitrova NA; Dimitrov GV; Dimitrov AG
    Med Biol Eng Comput; 2001 Mar; 39(2):202-7. PubMed ID: 11361248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method of estimating the distribution of muscle fiber conduction velocities.
    Okajima Y; Tsubahara A; Kondo K; Chino N; Noda Y; Tomita Y
    Electroencephalogr Clin Neurophysiol; 1995 Dec; 97(6):310-7. PubMed ID: 8536580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.