These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 22447387)
21. Detection and identification of Dehalococcoides species responsible for in situ dechlorination of trichloroethene to ethene enhanced by hydrogen-releasing compounds. Nishimura M; Ebisawa M; Sakihara S; Kobayashi A; Nakama T; Okochi M; Yohda M Biotechnol Appl Biochem; 2008 Sep; 51(Pt 1):1-7. PubMed ID: 17916062 [TBL] [Abstract][Full Text] [Related]
22. The reactive transport of trichloroethene is influenced by residence time and microbial numbers. Haest PJ; Philips J; Springael D; Smolders E J Contam Hydrol; 2011 Jan; 119(1-4):89-98. PubMed ID: 20952091 [TBL] [Abstract][Full Text] [Related]
23. Detection and quantitative estimation of Dehalococcoides spp. in a dechlorinating bioreactor by a combination of fluorescent in situ hybridisation (FISH) and kinetic analysis. Aulenta F; Rossetti S; Majone M; Tandoi V Appl Microbiol Biotechnol; 2004 Apr; 64(2):206-12. PubMed ID: 14685786 [TBL] [Abstract][Full Text] [Related]
24. Enhancement of perchloroethene dechlorination by a mixed dechlorinating culture via magnetic nanoparticle-mediated isolation method. Chen K; Liu Z; Wang X; Yu C; Ye J; Yu C; Wang F; Shen C Sci Total Environ; 2021 Sep; 786():147421. PubMed ID: 33964769 [TBL] [Abstract][Full Text] [Related]
25. Inhibition of Geobacter dechlorinators at elevated trichloroethene concentrations is explained by a reduced activity rather than by an enhanced cell decay. Philips J; Haest PJ; Springael D; Smolders E Environ Sci Technol; 2013 Feb; 47(3):1510-7. PubMed ID: 23281888 [TBL] [Abstract][Full Text] [Related]
26. Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Delgado AG; Parameswaran P; Fajardo-Williams D; Halden RU; Krajmalnik-Brown R Microb Cell Fact; 2012 Sep; 11():128. PubMed ID: 22974059 [TBL] [Abstract][Full Text] [Related]
27. CARD-FISH analysis of a TCE-dechlorinating biocathode operated at different set potentials. Di Battista A; Verdini R; Rossetti S; Pietrangeli B; Majone M; Aulenta F N Biotechnol; 2012 Nov; 30(1):33-8. PubMed ID: 22728722 [TBL] [Abstract][Full Text] [Related]
28. Influence of humic acid on the trichloroethene degradation by Dehalococcoides-containing consortium. Hu M; Zhang Y; Wang Z; Jiang Z; Li J J Hazard Mater; 2011 Jun; 190(1-3):1074-8. PubMed ID: 21501929 [TBL] [Abstract][Full Text] [Related]
29. Retention and transport of an anaerobic trichloroethene dechlorinating microbial culture in anaerobic porous media. Zhang H; Ulrich AC; Liu Y Colloids Surf B Biointerfaces; 2015 Jun; 130():110-8. PubMed ID: 25935560 [TBL] [Abstract][Full Text] [Related]
30. Dynamics of reductive TCE dechlorination in two distinct H(2) supply scenarios and at various temperatures. Heimann AC; Friis AK; Scheutz C; Jakobsen R Biodegradation; 2007 Apr; 18(2):167-79. PubMed ID: 16570228 [TBL] [Abstract][Full Text] [Related]
31. Distribution of a dechlorinating community in relation to the distance from a trichloroethene dense nonaqueous phase liquid in a model aquifer. Philips J; Hamels F; Smolders E; Springael D FEMS Microbiol Ecol; 2012 Sep; 81(3):636-47. PubMed ID: 22512272 [TBL] [Abstract][Full Text] [Related]
32. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. Azizian MF; Marshall IP; Behrens S; Spormann AM; Semprini L J Contam Hydrol; 2010 Apr; 113(1-4):77-92. PubMed ID: 20202715 [TBL] [Abstract][Full Text] [Related]
33. Polyphasic characterization of an anaerobic hexachlorobenzene-dechlorinating microbial consortium with a wide dechlorination spectrum for chlorobenzenes. Zhou X; Zhang C; Zhang D; Awata T; Xiao Z; Yang Q; Katayama A J Biosci Bioeng; 2015 Jul; 120(1):62-8. PubMed ID: 25795569 [TBL] [Abstract][Full Text] [Related]
34. Enhanced reductive dechlorination of trichloroethene with immobilized Clostridium butyricum in silica gel. Lo KH; Lu CW; Lin WH; Chien CC; Chen SC; Kao CM Chemosphere; 2020 Jan; 238():124596. PubMed ID: 31524629 [TBL] [Abstract][Full Text] [Related]
35. Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Aulenta F; Tocca L; Verdini R; Reale P; Majone M Environ Sci Technol; 2011 Oct; 45(19):8444-51. PubMed ID: 21877695 [TBL] [Abstract][Full Text] [Related]
36. Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: experimental evaluation and modeling. Philips J; Miroshnikov A; Haest PJ; Springael D; Smolders E J Contam Hydrol; 2014 Dec; 170():28-38. PubMed ID: 25306502 [TBL] [Abstract][Full Text] [Related]
37. Influence of non-dechlorinating microbes on trichloroethene reduction based on vitamin B Wen LL; Li Y; Zhu L; Zhao HP Environ Pollut; 2020 Apr; 259():113947. PubMed ID: 31931416 [TBL] [Abstract][Full Text] [Related]
38. Global gene expression of Dehalococcoides within a robust dynamic TCE-dechlorinating community under conditions of periodic substrate supply. West KA; Lee PK; Johnson DR; Zinder SH; Alvarez-Cohen L Biotechnol Bioeng; 2013 May; 110(5):1333-41. PubMed ID: 23280440 [TBL] [Abstract][Full Text] [Related]
39. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. He J; Sung Y; Krajmalnik-Brown R; Ritalahti KM; Löffler FE Environ Microbiol; 2005 Sep; 7(9):1442-50. PubMed ID: 16104866 [TBL] [Abstract][Full Text] [Related]
40. Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures. Delgado AG; Fajardo-Williams D; Popat SC; Torres CI; Krajmalnik-Brown R Appl Microbiol Biotechnol; 2014 Mar; 98(6):2729-37. PubMed ID: 24085396 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]