These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 22447596)
21. Soybean-Phakopsora pachyrhizi interactions: towards the development of next-generation disease-resistant plants. Chicowski AS; Bredow M; Utiyama AS; Marcelino-Guimarães FC; Whitham SA Plant Biotechnol J; 2024 Feb; 22(2):296-315. PubMed ID: 37883664 [TBL] [Abstract][Full Text] [Related]
22. Monoclonal antibodies for the detection of Puccinia striiformis urediniospores. Skottrup P; Frøkiaer H; Hearty S; O'Kennedy R; Hejgaard J; Nicolaisen M; Justesen AF Mycol Res; 2007 Mar; 111(Pt 3):332-8. PubMed ID: 17350244 [TBL] [Abstract][Full Text] [Related]
23. First Report of Soybean Rust Caused by Phakopsora pachyrhizi on Phaseolus spp. in Argentina. Ivancovich AJ; Botta G; Rivadaneira M; Saieg E; Erazzú L; Guillin E Plant Dis; 2007 Jan; 91(1):111. PubMed ID: 30781083 [TBL] [Abstract][Full Text] [Related]
24. Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. Soria-Guerra RE; Rosales-Mendoza S; Chang S; Haudenshield JS; Padmanaban A; Rodriguez-Zas S; Hartman GL; Ghabrial SA; Korban SS Theor Appl Genet; 2010 May; 120(7):1315-33. PubMed ID: 20058146 [TBL] [Abstract][Full Text] [Related]
25. Genomic regions associated with resistance to soybean rust (Phakopsora pachyrhizi) under field conditions in soybean germplasm accessions from Japan, Indonesia and Vietnam. Walker DR; McDonald SC; Harris DK; Roger Boerma H; Buck JW; Sikora EJ; Weaver DB; Wright DL; Marois JJ; Li Z Theor Appl Genet; 2022 Sep; 135(9):3073-3086. PubMed ID: 35902398 [TBL] [Abstract][Full Text] [Related]
26. The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families. Link TI; Lang P; Scheffler BE; Duke MV; Graham MA; Cooper B; Tucker ML; van de Mortel M; Voegele RT; Mendgen K; Baum TJ; Whitham SA Mol Plant Pathol; 2014 May; 15(4):379-93. PubMed ID: 24341524 [TBL] [Abstract][Full Text] [Related]
27. A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects Soybean Asian rust (Phakopsora pachyrhizi) spore germination. Vasconcelos EA; Santana CG; Godoy CV; Seixas CD; Silva MS; Moreira LR; Oliveira-Neto OB; Price D; Fitches E; Filho EX; Mehta A; Gatehouse JA; Grossi-De-Sa MF BMC Biotechnol; 2011 Feb; 11():14. PubMed ID: 21299880 [TBL] [Abstract][Full Text] [Related]
28. SNP assay to detect the 'Hyuuga' red-brown lesion resistance gene for Asian soybean rust. Monteros MJ; Ha BK; Phillips DV; Boerma HR Theor Appl Genet; 2010 Oct; 121(6):1023-32. PubMed ID: 20532750 [TBL] [Abstract][Full Text] [Related]
29. Sensitivity assessment and SDHC-I86F mutation frequency of Phakopsora pachyrhizi populations to benzovindiflupyr and fluxapyroxad fungicides from 2015 to 2019 in Brazil. Mello FE; Mathioni SM; Fantin LH; Rosa DD; Antunes RFD; Filho NRC; Duvaresch DL; Canteri MG Pest Manag Sci; 2021 Oct; 77(10):4331-4339. PubMed ID: 33950556 [TBL] [Abstract][Full Text] [Related]
30. Unraveling Asian Soybean Rust metabolomics using mass spectrometry and Molecular Networking approach. Silva E; da Graça JP; Porto C; Martin do Prado R; Hoffmann-Campo CB; Meyer MC; de Oliveira Nunes E; Pilau EJ Sci Rep; 2020 Jan; 10(1):138. PubMed ID: 31924833 [TBL] [Abstract][Full Text] [Related]
32. Effects of daily temperature highs on development of Phakopsora pachyrhizi on soybean. Bonde MR; Nester SE; Berner DK Phytopathology; 2012 Aug; 102(8):761-8. PubMed ID: 22779743 [TBL] [Abstract][Full Text] [Related]
33. Natural antisense transcripts in plants: a review and identification in soybean infected with Phakopsora pachyrhizi SuperSAGE library. Britto-Kido Sde A; Ferreira Neto JR; Pandolfi V; Marcelino-Guimarães FC; Nepomuceno AL; Vilela Abdelnoor R; Benko-Iseppon AM; Kido EA ScientificWorldJournal; 2013; 2013():219798. PubMed ID: 23878522 [TBL] [Abstract][Full Text] [Related]
34. Combinatorially selected peptides for protection of soybean against Phakopsora pachyrhizi. Fang ZD; Marois JJ; Stacey G; Schoelz JE; English JT; Schmidt FJ Phytopathology; 2010 Oct; 100(10):1111-7. PubMed ID: 20839946 [TBL] [Abstract][Full Text] [Related]
35. Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2. Pandey AK; Yang C; Zhang C; Graham MA; Horstman HD; Lee Y; Zabotina OA; Hill JH; Pedley KF; Whitham SA Mol Plant Microbe Interact; 2011 Feb; 24(2):194-206. PubMed ID: 20977308 [TBL] [Abstract][Full Text] [Related]
36. Effects of Simplicillium lanosoniveum on Phakopsora pachyrhizi, the soybean rust pathogen, and its use as a biological control agent. Ward NA; Robertson CL; Chanda AK; Schneider RW Phytopathology; 2012 Aug; 102(8):749-60. PubMed ID: 22533877 [TBL] [Abstract][Full Text] [Related]
37. In vivo assessment by Mach-Zehnder double-beam interferometry of the invasive force exerted by the Asian soybean rust fungus (Phakopsora pachyrhizi). Loehrer M; Botterweck J; Jahnke J; Mahlmann DM; Gaetgens J; Oldiges M; Horbach R; Deising H; Schaffrath U New Phytol; 2014 Jul; 203(2):620-631. PubMed ID: 24725259 [TBL] [Abstract][Full Text] [Related]
38. UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. Langenbach C; Campe R; Schaffrath U; Goellner K; Conrath U New Phytol; 2013 Apr; 198(2):536-545. PubMed ID: 23356583 [TBL] [Abstract][Full Text] [Related]
39. Expressed sequence tag analysis of the soybean rust pathogen Phakopsora pachyrhizi. Posada-Buitrago ML; Frederick RD Fungal Genet Biol; 2005 Dec; 42(12):949-62. PubMed ID: 16291502 [TBL] [Abstract][Full Text] [Related]
40. The importance of phenolic metabolism to limit the growth of Phakopsora pachyrhizi. Lygin AV; Li S; Vittal R; Widholm JM; Hartman GL; Lozovaya VV Phytopathology; 2009 Dec; 99(12):1412-20. PubMed ID: 19900008 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]