BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22447650)

  • 1. Computational investigation of the HIV-1 Rev multimerization using molecular dynamics simulations and binding free energy calculations.
    Venken T; Daelemans D; De Maeyer M; Voet A
    Proteins; 2012 Jun; 80(6):1633-46. PubMed ID: 22447650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine side-chain dynamics in the HIV-1 rev-RRE complex.
    Wilkinson TA; Botuyan MV; Kaplan BE; Rossi JJ; Chen Y
    J Mol Biol; 2000 Nov; 303(4):515-29. PubMed ID: 11054288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between HIV Rev and nuclear import and export factors: the Rev nuclear localisation signal mediates specific binding to human importin-beta.
    Henderson BR; Percipalle P
    J Mol Biol; 1997 Dec; 274(5):693-707. PubMed ID: 9405152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention of conformational flexibility in HIV-1 Rev-RNA complexes.
    Wilkinson TA; Zhu L; Hu W; Chen Y
    Biochemistry; 2004 Dec; 43(51):16153-60. PubMed ID: 15610009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of the HIV-1 Rev dimer structure at 3.2 A resolution for multimeric binding to the Rev response element.
    DiMattia MA; Watts NR; Stahl SJ; Rader C; Wingfield PT; Stuart DI; Steven AC; Grimes JM
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5810-4. PubMed ID: 20231488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function.
    Urcuqui-Inchima S; Castaño ME; Hernandez-Verdun D; St-Laurent G; Kumar A
    Retrovirology; 2006 Nov; 3():83. PubMed ID: 17125513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exchange of the basic domain of human immunodeficiency virus type 1 Rev for a polyarginine stretch expands the RNA binding specificity, and a minimal arginine cluster is required for optimal RRE RNA binding affinity, nuclear accumulation, and trans-activation.
    Nam YS; Petrovic A; Jeong KS; Venkatesan S
    J Virol; 2001 Mar; 75(6):2957-71. PubMed ID: 11222721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid requirement for the high affinity binding of a selected arginine-rich peptide with the HIV Rev-response element RNA.
    Sugaya M; Nishino N; Katoh A; Harada K
    J Pept Sci; 2008 Aug; 14(8):924-35. PubMed ID: 18351707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence requirements for Rev multimerization in vivo.
    Madore SJ; Tiley LS; Malim MH; Cullen BR
    Virology; 1994 Jul; 202(1):186-94. PubMed ID: 7516596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural change in Rev responsive element RNA of HIV-1 on binding Rev peptide.
    Peterson RD; Feigon J
    J Mol Biol; 1996 Dec; 264(5):863-77. PubMed ID: 9000617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A long-awaited structure is rev-ealed.
    Hammarskjold MH; Rekosh D
    Viruses; 2011 May; 3(5):484-92. PubMed ID: 21941623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling suggests dimerization of equine infectious anemia virus Rev is required for RNA binding.
    Umunnakwe CN; Loyd H; Cornick K; Chavez JR; Dobbs D; Carpenter S
    Retrovirology; 2014 Dec; 11():115. PubMed ID: 25533001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potent inhibition of HIV-1 replication by backbone cyclic peptides bearing the Rev arginine rich motif.
    Chaloin L; Smagulova F; Hariton-Gazal E; Briant L; Loyter A; Devaux C
    J Biomed Sci; 2007 Sep; 14(5):565-84. PubMed ID: 17520355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Structure of HIV-1 Rev Filaments Suggests a Bilateral Model for Rev-RRE Assembly.
    DiMattia MA; Watts NR; Cheng N; Huang R; Heymann JB; Grimes JM; Wingfield PT; Stuart DI; Steven AC
    Structure; 2016 Jul; 24(7):1068-80. PubMed ID: 27265851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural dynamics of HIV-1 Rev and its complexes with RRE and 5S RNA.
    Lam WC; Seifert JM; Amberger F; Graf C; Auer M; Millar DP
    Biochemistry; 1998 Feb; 37(7):1800-9. PubMed ID: 9485305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
    Lepsík M; Kríz Z; Havlas Z
    Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anti-apoptotic protein, Hax-1, inhibits the HIV-1 rev function by altering its sub-cellular localization.
    Modem S; Reddy TR
    J Cell Physiol; 2008 Jan; 214(1):14-9. PubMed ID: 17929250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding and thermodynamics of REV peptide-ctDNA interaction.
    Upadhyay SK
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural model of the HIV-1 Rev-integrase complex: the molecular basis of integrase regulation by Rev.
    Benyamini H; Loyter A; Friedler A
    Biochem Biophys Res Commun; 2011 Dec; 416(3-4):252-7. PubMed ID: 22093836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the HIV-1 Rev response element alone and in complex with regulator of virion (Rev) studied by atomic force microscopy.
    Pallesen J; Dong M; Besenbacher F; Kjems J
    FEBS J; 2009 Aug; 276(15):4223-32. PubMed ID: 19583776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.