These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22447661)

  • 1. Atomic structural analysis of nanowire defects and polytypes enabled through cross-sectional lattice imaging.
    Hemesath ER; Schreiber DK; Kisielowski CF; Petford-Long AK; Lauhon LJ
    Small; 2012 Jun; 8(11):1717-24. PubMed ID: 22447661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon nanowire polytypes: identification by Raman spectroscopy, generation mechanism, and misfit strain in homostructures.
    Lopez FJ; Givan U; Connell JG; Lauhon LJ
    ACS Nano; 2011 Nov; 5(11):8958-66. PubMed ID: 22017649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructural transformation and formation of heterojunctions from Si nanowires.
    Wong TL; Cheng C; Li W; Fung KK; Wang N
    ACS Nano; 2010 Oct; 4(10):5559-64. PubMed ID: 20845917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ordered stacking fault arrays in silicon nanowires.
    Lopez FJ; Hemesath ER; Lauhon LJ
    Nano Lett; 2009 Jul; 9(7):2774-9. PubMed ID: 19527044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanobeam electron diffraction and high resolution imaging analysis of InN films grown on sapphire.
    Liu Z; Kinsey RJ; Durbin SM; Ringer SP
    Microsc Res Tech; 2007 Mar; 70(3):205-10. PubMed ID: 17279518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for directly correlating site-specific cross-sectional and plan-view transmission electron microscopy of individual nanostructures.
    Schreiber DK; Adusumilli P; Hemesath ER; Seidman DN; Petford-Long AK; Lauhon LJ
    Microsc Microanal; 2012 Dec; 18(6):1410-8. PubMed ID: 23146147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tri- and quadri-metallic ultrathin nanowires synthesized by one-step phase-transfer approach.
    Han WQ; Su D; Wu L; Aoki T; Zhu Y
    Nanotechnology; 2009 Dec; 20(49):495605. PubMed ID: 19893144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.
    Xu S; Tian M; Wang J; Xu J; Redwing JM; Chan MH
    Small; 2005 Dec; 1(12):1221-9. PubMed ID: 17193423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of planar defects in ZnO nanobelts and nanowires.
    Ding Y; Wang ZL
    Micron; 2009 Apr; 40(3):335-42. PubMed ID: 19081262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of polytype formation in VLS-grown Ge nanowires through defect generation and nanowire kinking.
    Jeon N; Dayeh SA; Lauhon LJ
    Nano Lett; 2013 Aug; 13(8):3947-52. PubMed ID: 23898822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging and analysis of nanowires.
    Bell DC; Wu Y; Barrelet CJ; Gradecak S; Xiang J; Timko BP; Lieber CM
    Microsc Res Tech; 2004 Aug; 64(5-6):373-89. PubMed ID: 15549698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolving in situ specific-contact, current-crowding, and channel resistivity in nanowire devices: a case study with silver nanowires.
    Koleśnik MM; Hansel S; Lutz T; Kinahan N; Boese M; Krstić V
    Small; 2011 Oct; 7(20):2873-7. PubMed ID: 21901823
    [No Abstract]   [Full Text] [Related]  

  • 13. Self-organized Ce(1-x)Gd(x)O(2-y) nanowire networks with very fast coarsening driven by attractive elastic interactions.
    Gibert M; Abellán P; Benedetti A; Puig T; Sandiumenge F; García A; Obradors X
    Small; 2010 Dec; 6(23):2716-24. PubMed ID: 21064087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of local Si-nanowire growth kinetics using in situ transmission electron microscopy of heated cantilevers.
    Kallesøe C; Wen CY; Mølhave K; Bøggild P; Ross FM
    Small; 2010 Sep; 6(18):2058-64. PubMed ID: 20730823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.
    Habicht S; Zhao QT; Feste SF; Knoll L; Trellenkamp S; Ghyselen B; Mantl S
    Nanotechnology; 2010 Mar; 21(10):105701. PubMed ID: 20154367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale twinned copper nanowire formation by direct electrodeposition.
    Zhong S; Koch T; Wang M; Scherer T; Walheim S; Hahn H; Schimmel T
    Small; 2009 Oct; 5(20):2265-70. PubMed ID: 19670394
    [No Abstract]   [Full Text] [Related]  

  • 17. Free-standing ZnO-CuO composite nanowire array films and their gas sensing properties.
    Wang JX; Sun XW; Yang Y; Kyaw KK; Huang XY; Yin JZ; Wei J; Demir HV
    Nanotechnology; 2011 Aug; 22(32):325704. PubMed ID: 21772068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple double cross-section transmission electron microscope sample preparation of specific sub-10 nm diameter Si nanowire devices.
    Gignac LM; Mittal S; Bangsaruntip S; Cohen GM; Sleight JW
    Microsc Microanal; 2011 Dec; 17(6):889-95. PubMed ID: 22071222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy.
    Landré O; Bougerol C; Renevier H; Daudin B
    Nanotechnology; 2009 Oct; 20(41):415602. PubMed ID: 19755728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.