These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 22447727)
1. Beta-tricalcium phosphate particles as a controlled release carrier of osteogenic proteins for bone tissue engineering. Hu J; Hou Y; Park H; Lee M J Biomed Mater Res A; 2012 Jul; 100(7):1680-6. PubMed ID: 22447727 [TBL] [Abstract][Full Text] [Related]
2. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering. E LL; Xu LL; Wu X; Wang DS; Lv Y; Wang JZ; Liu HC Tissue Eng Part A; 2010 Sep; 16(9):2927-40. PubMed ID: 20486786 [TBL] [Abstract][Full Text] [Related]
3. Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles. Zhang Y; Dong R; Park Y; Bohner M; Zhang X; Ting K; Soo C; Wu BM Int J Pharm; 2016 Sep; 511(1):79-89. PubMed ID: 27349789 [TBL] [Abstract][Full Text] [Related]
4. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
5. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Rai B; Teoh SH; Hutmacher DW; Cao T; Ho KH Biomaterials; 2005 Jun; 26(17):3739-48. PubMed ID: 15621264 [TBL] [Abstract][Full Text] [Related]
6. An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice. Hu JZ; Zhang ZY; Zhao J; Zhang XL; Liu GT; Jiang XQ Chin Med J (Engl); 2009 Apr; 122(8):972-9. PubMed ID: 19493425 [TBL] [Abstract][Full Text] [Related]
7. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation. Zerbo IR; Bronckers AL; de Lange G; Burger EH Biomaterials; 2005 Apr; 26(12):1445-51. PubMed ID: 15482833 [TBL] [Abstract][Full Text] [Related]
8. Delivery of lyophilized Nell-1 in a rat spinal fusion model. Li W; Lee M; Whang J; Siu RK; Zhang X; Liu C; Wu BM; Wang JC; Ting K; Soo C Tissue Eng Part A; 2010 Sep; 16(9):2861-70. PubMed ID: 20528102 [TBL] [Abstract][Full Text] [Related]
9. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Takahashi Y; Yamamoto M; Tabata Y Biomaterials; 2005 Aug; 26(23):4856-65. PubMed ID: 15763265 [TBL] [Abstract][Full Text] [Related]
10. Bone bonding mechanism of beta-tricalcium phosphate. Kotani S; Fujita Y; Kitsugi T; Nakamura T; Yamamuro T; Ohtsuki C; Kokubo T J Biomed Mater Res; 1991 Oct; 25(10):1303-15. PubMed ID: 1812121 [TBL] [Abstract][Full Text] [Related]
11. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. Sohier J; Daculsi G; Sourice S; de Groot K; Layrolle P J Biomed Mater Res A; 2010 Mar; 92(3):1105-14. PubMed ID: 19301273 [TBL] [Abstract][Full Text] [Related]
12. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Kasten P; Beyen I; Niemeyer P; Luginbühl R; Bohner M; Richter W Acta Biomater; 2008 Nov; 4(6):1904-15. PubMed ID: 18571999 [TBL] [Abstract][Full Text] [Related]
13. The effectiveness of the controlled release of simvastatin from β-TCP macrosphere in the treatment of OVX mice. Chou J; Ito T; Otsuka M; Ben-Nissan B; Milthorpe B J Tissue Eng Regen Med; 2016 Mar; 10(3):E195-203. PubMed ID: 23784984 [TBL] [Abstract][Full Text] [Related]
14. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related]
15. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Kim CS; Kim JI; Kim J; Choi SH; Chai JK; Kim CK; Cho KS Biomaterials; 2005 May; 26(15):2501-7. PubMed ID: 15585252 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
17. An in vitro evaluation of PCL-TCP composites as delivery systems for platelet-rich plasma. Rai B; Teoh SH; Ho KH J Control Release; 2005 Oct; 107(2):330-42. PubMed ID: 16085332 [TBL] [Abstract][Full Text] [Related]
18. Apatite-coated collagen scaffold for bone morphogenetic protein-2 delivery. Yang HS; La WG; Bhang SH; Lee TJ; Lee M; Kim BS Tissue Eng Part A; 2011 Sep; 17(17-18):2153-64. PubMed ID: 21529263 [TBL] [Abstract][Full Text] [Related]
19. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Kasten P; Vogel J; Luginbühl R; Niemeyer P; Weiss S; Schneider S; Kramer M; Leo A; Richter W Cells Tissues Organs; 2006; 183(2):68-79. PubMed ID: 17053323 [TBL] [Abstract][Full Text] [Related]
20. Porous beta-tricalcium phosphate/collagen composites prepared in an alkaline condition. Zou C; Weng W; Cheng K; Du P; Shen G; Han G; Guan B; Yan W J Biomed Mater Res A; 2008 Oct; 87(1):38-44. PubMed ID: 18080301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]