These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 2244792)

  • 1. Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE.
    Ewers J; Freier-Schröder D; Knackmuss HJ
    Arch Microbiol; 1990; 154(4):410-3. PubMed ID: 2244792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isopropylbenzene (cumene)--a new substrate for the isolation of trichloroethene-degrading bacteria.
    Dabrock B; Riedel J; Bertram J; Gottschalk G
    Arch Microbiol; 1992; 158(1):9-13. PubMed ID: 1444717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of aerobic metabolic cis-1,2-di-chloroethene biodegradation by other chloroethenes.
    Zhao HP; Schmidt KR; Tiehm A
    Water Res; 2010 Apr; 44(7):2276-82. PubMed ID: 20079512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil.
    Mu DY; Scow KM
    Appl Environ Microbiol; 1994 Jul; 60(7):2661-5. PubMed ID: 8074538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete reductive dechlorination of trichloroethene by a groundwater microbial consortium.
    Bolesch DG; Nielsen RB; Keasling JD
    Ann N Y Acad Sci; 1997 Nov; 829():97-102. PubMed ID: 9472315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sorption and desorption resistance on aerobic trichloroethylene biodegradation in soils.
    Lee S; Moe WM; Valsaraj KT; Pardue JH
    Environ Toxicol Chem; 2002 Aug; 21(8):1609-17. PubMed ID: 12152760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of electron donors and acceptors on the bioremediation of soil contaminated with trichloroethene and nickel: laboratory- and pilot-scale study.
    El Mamouni R; Jacquet R; Gerin P; Agathos SN
    Water Sci Technol; 2002; 45(10):49-54. PubMed ID: 12188576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134.
    Harker AR; Kim Y
    Appl Environ Microbiol; 1990 Apr; 56(4):1179-81. PubMed ID: 2339875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil.
    Fernandes VC; Albergaria JT; Oliva-Teles T; Delerue-Matos C; De Marco P
    Biodegradation; 2009 Jun; 20(3):375-82. PubMed ID: 18987783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The prospects of using bacteria of the genus Rhodococcus and microbial surfactants for the degradation of oil pollutants].
    Karpenko EV; Vil'danova-Martsishin RI; Shcheglova NS; Pirog TP; Voloshina IN
    Prikl Biokhim Mikrobiol; 2006; 42(2):175-9. PubMed ID: 16761570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory study of treatment of trichloroethene by chemical oxidation followed by bioremediation.
    Hrapovic L; Sleep BE; Major DJ; Hood ED
    Environ Sci Technol; 2005 Apr; 39(8):2888-97. PubMed ID: 15884390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils.
    Suttinun O; Müller R; Luepromchai E
    Biodegradation; 2009 Apr; 20(2):281-91. PubMed ID: 18846429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers.
    Shao Y; Hatzinger PB; Streger SH; Rezes RT; Chu KH
    Biodegradation; 2019 Jun; 30(2-3):173-190. PubMed ID: 30989421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1.
    Marco-Urrea E; Nijenhuis I; Adrian L
    Environ Sci Technol; 2011 Feb; 45(4):1555-62. PubMed ID: 21214238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic metabolic trichloroethene biodegradation under field-relevant conditions.
    Gaza S; Schmidt KR; Weigold P; Heidinger M; Tiehm A
    Water Res; 2019 Mar; 151():343-348. PubMed ID: 30616046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A field evaluation of in situ biodegradation of trichloroethylene through methane injection.
    Eguchi M; Kitagawa M; Suzuki Y; Nakamuara M; Kawai T; Okamura K; Sasaki S; Miyake Y
    Water Res; 2001 Jun; 35(9):2145-52. PubMed ID: 11358293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review: advances in microbial remediation of trichloroethylene (TCE).
    Pant P; Pant S
    J Environ Sci (China); 2010; 22(1):116-26. PubMed ID: 20397395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural attenuation of trichloroethylene in fractured shale bedrock.
    Lenczewski M; Jardine P; McKay L; Layton A
    J Contam Hydrol; 2003 Jul; 64(3-4):151-68. PubMed ID: 12814878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical diversity of trichloroethylene metabolism.
    Ensley BD
    Annu Rev Microbiol; 1991; 45():283-99. PubMed ID: 1741617
    [No Abstract]   [Full Text] [Related]  

  • 20. Transpiration and metabolisation of TCE by willow plants - a pot experiment.
    Schöftner P; Watzinger A; Holzknecht P; Wimmer B; Reichenauer TG
    Int J Phytoremediation; 2016; 18(7):686-92. PubMed ID: 26684839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.