These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22448304)

  • 1. Multiple Tyrosine Residues Contribute to GABA Binding in the GABA(C) Receptor Binding Pocket.
    Lummis SC; Harrison NJ; Wang J; Ashby JA; Millen KS; Beene DL; Dougherty DA
    ACS Chem Neurosci; 2012 Mar; 3(3):186-192. PubMed ID: 22448304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two amino acid residues contribute to a cation-π binding interaction in the binding site of an insect GABA receptor.
    Lummis SC; McGonigle I; Ashby JA; Dougherty DA
    J Neurosci; 2011 Aug; 31(34):12371-6. PubMed ID: 21865479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unnatural amino acid mutagenesis of the GABA(A) receptor binding site residues reveals a novel cation-pi interaction between GABA and beta 2Tyr97.
    Padgett CL; Hanek AP; Lester HA; Dougherty DA; Lummis SC
    J Neurosci; 2007 Jan; 27(4):886-92. PubMed ID: 17251430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cation-pi binding interaction with a tyrosine in the binding site of the GABAC receptor.
    Lummis SC; L Beene D; Harrison NJ; Lester HA; Dougherty DA
    Chem Biol; 2005 Sep; 12(9):993-7. PubMed ID: 16183023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of GABA binding to the GABAC receptor: the role of Arg104.
    Melis C; Lummis SC; Molteni C
    Biophys J; 2008 Nov; 95(9):4115-23. PubMed ID: 18641081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.
    Zhang J; Xue F; Chang Y
    Mol Pharmacol; 2008 Oct; 74(4):941-51. PubMed ID: 18599601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine residues that control binding and gating in the 5-hydroxytryptamine3 receptor revealed by unnatural amino acid mutagenesis.
    Beene DL; Price KL; Lester HA; Dougherty DA; Lummis SC
    J Neurosci; 2004 Oct; 24(41):9097-104. PubMed ID: 15483128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three arginines in the GABAA receptor binding pocket have distinct roles in the formation and stability of agonist- versus antagonist-bound complexes.
    Goldschen-Ohm MP; Wagner DA; Jones MV
    Mol Pharmacol; 2011 Oct; 80(4):647-56. PubMed ID: 21764985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loop G in the GABA
    Baptista-Hon DT; Gulbinaite S; Hales TG
    J Physiol; 2017 Mar; 595(5):1725-1741. PubMed ID: 27981574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Characterization of Binding Loop E in the Nematode Cys-Loop GABA Receptor.
    Kwaka A; Hassan Khatami M; Foster J; Cochrane E; Habibi SA; de Haan HW; Forrester SG
    Mol Pharmacol; 2018 Nov; 94(5):1289-1297. PubMed ID: 30194106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of tyrosine residues in the extracellular domain of the 5-hydroxytryptamine3 receptor.
    Price KL; Lummis SC
    J Biol Chem; 2004 May; 279(22):23294-301. PubMed ID: 14998995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple tyrosine residues at the GABA binding pocket influence surface expression and mediate kinetics of the GABAA receptor.
    Laha KT; Tran PN
    J Neurochem; 2013 Jan; 124(2):200-9. PubMed ID: 23121119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locating the carboxylate group of GABA in the homomeric rho GABA(A) receptor ligand-binding pocket.
    Harrison NJ; Lummis SC
    J Biol Chem; 2006 Aug; 281(34):24455-61. PubMed ID: 16754677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of agonist binding to the ligand-gated ion channel superfamily of receptors.
    Cockcroft VB; Osguthorpe DJ; Barnard EA; Lunt GG
    Proteins; 1990; 8(4):386-97. PubMed ID: 1965333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charged residues in the alpha1 and beta2 pre-M1 regions involved in GABAA receptor activation.
    Mercado J; Czajkowski C
    J Neurosci; 2006 Feb; 26(7):2031-40. PubMed ID: 16481436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor.
    Kaji MD; Kwaka A; Callanan MK; Nusrat H; Desaulniers JP; Forrester SG
    Br J Pharmacol; 2015 Aug; 172(15):3737-47. PubMed ID: 25850584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mutational and molecular dynamics study of the cys-loop GABA receptor Hco-UNC-49 from Haemonchus contortus: Agonist recognition in the nematode GABA receptor family.
    Foster J; Cochrane E; Khatami MH; Habibi SA; de Haan H; Forrester SG
    Int J Parasitol Drugs Drug Resist; 2018 Dec; 8(3):534-539. PubMed ID: 30361167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Haemonchus contortus UNC-49B subunit possesses the residues required for GABA sensitivity in homomeric and heteromeric channels.
    Accardi MV; Forrester SG
    Mol Biochem Parasitol; 2011; 178(1-2):15-22. PubMed ID: 21524670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved salt bridge critical for GABA(A) receptor function and loop C dynamics.
    Venkatachalan SP; Czajkowski C
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13604-9. PubMed ID: 18757734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional asymmetry of the conserved cystine loops in alphabetagamma GABA A receptors revealed by the response to GABA activation and drug potentiation.
    Tierney ML; Luu T; Gage PW
    Int J Biochem Cell Biol; 2008; 40(5):968-79. PubMed ID: 18083058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.