These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 22448900)
1. Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Gondikas AP; Morris A; Reinsch BC; Marinakos SM; Lowry GV; Hsu-Kim H Environ Sci Technol; 2012 Jul; 46(13):7037-45. PubMed ID: 22448900 [TBL] [Abstract][Full Text] [Related]
2. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Unrine JM; Colman BP; Bone AJ; Gondikas AP; Matson CW Environ Sci Technol; 2012 Jul; 46(13):6915-24. PubMed ID: 22452441 [TBL] [Abstract][Full Text] [Related]
3. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Angel BM; Batley GE; Jarolimek CV; Rogers NJ Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009 [TBL] [Abstract][Full Text] [Related]
4. Aggregation kinetics and dissolution of coated silver nanoparticles. Li X; Lenhart JJ; Walker HW Langmuir; 2012 Jan; 28(2):1095-104. PubMed ID: 22149007 [TBL] [Abstract][Full Text] [Related]
5. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation. Bone AJ; Colman BP; Gondikas AP; Newton KM; Harrold KH; Cory RM; Unrine JM; Klaine SJ; Matson CW; Di Giulio RT Environ Sci Technol; 2012 Jul; 46(13):6925-33. PubMed ID: 22680837 [TBL] [Abstract][Full Text] [Related]
6. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Tejamaya M; Römer I; Merrifield RC; Lead JR Environ Sci Technol; 2012 Jul; 46(13):7011-7. PubMed ID: 22432856 [TBL] [Abstract][Full Text] [Related]
7. Mobility of capped silver nanoparticles under environmentally relevant conditions. Thio BJ; Montes MO; Mahmoud MA; Lee DW; Zhou D; Keller AA Environ Sci Technol; 2012 Jul; 46(13):6985-91. PubMed ID: 22133047 [TBL] [Abstract][Full Text] [Related]
8. Silver release from silver nanoparticles in natural waters. Dobias J; Bernier-Latmani R Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230 [TBL] [Abstract][Full Text] [Related]
9. Effect of different water conditions on dissolution of nanosilver. Chen SF; Zhang H; Lin QY Water Sci Technol; 2013; 68(8):1745-50. PubMed ID: 24185055 [TBL] [Abstract][Full Text] [Related]
10. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S. Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296 [TBL] [Abstract][Full Text] [Related]
11. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Levard C; Reinsch BC; Michel FM; Oumahi C; Lowry GV; Brown GE Environ Sci Technol; 2011 Jun; 45(12):5260-6. PubMed ID: 21598969 [TBL] [Abstract][Full Text] [Related]
12. Aggregation and dissolution of silver nanoparticles in natural surface water. Li X; Lenhart JJ Environ Sci Technol; 2012 May; 46(10):5378-86. PubMed ID: 22502776 [TBL] [Abstract][Full Text] [Related]
13. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. Gao J; Powers K; Wang Y; Zhou H; Roberts SM; Moudgil BM; Koopman B; Barber DS Chemosphere; 2012 Sep; 89(1):96-101. PubMed ID: 22583785 [TBL] [Abstract][Full Text] [Related]
14. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Liu J; Hurt RH Environ Sci Technol; 2010 Mar; 44(6):2169-75. PubMed ID: 20175529 [TBL] [Abstract][Full Text] [Related]
15. Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide. Sigg L; Lindauer U Environ Pollut; 2015 Nov; 206():582-7. PubMed ID: 26310977 [TBL] [Abstract][Full Text] [Related]
16. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods. Jo HJ; Choi JW; Lee SH; Hong SW J Hazard Mater; 2012 Aug; 227-228():301-8. PubMed ID: 22682800 [TBL] [Abstract][Full Text] [Related]
17. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Peretyazhko TS; Zhang Q; Colvin VL Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014 [TBL] [Abstract][Full Text] [Related]
18. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension. Scheckel KG; Luxton TP; El Badawy AM; Impellitteri CA; Tolaymat TM Environ Sci Technol; 2010 Feb; 44(4):1307-12. PubMed ID: 20078035 [TBL] [Abstract][Full Text] [Related]
19. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. Glover RD; Miller JM; Hutchison JE ACS Nano; 2011 Nov; 5(11):8950-7. PubMed ID: 21985489 [TBL] [Abstract][Full Text] [Related]
20. Precipitation and growth of zinc sulfide nanoparticles in the presence of thiol-containing natural organic ligands. Lau BL; Hsu-Kim H Environ Sci Technol; 2008 Oct; 42(19):7236-41. PubMed ID: 18939552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]