These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22449138)

  • 41. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries.
    Lu S; Chen Y; Zhou J; Wang Z; Wu X; Gu J; Zhang X; Pang A; Jiao Z; Jiang L
    Sci Rep; 2016 Feb; 6():20445. PubMed ID: 26842015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Covalently Functionalized Graphene by Radical Polymers for Graphene-Based High-Performance Cathode Materials.
    Li Y; Jian Z; Lang M; Zhang C; Huang X
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17352-9. PubMed ID: 27328986
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polyiodide-Shuttle Restricting Polymer Cathode for Rechargeable Lithium/Iodine Battery with Ultralong Cycle Life.
    Meng Z; Tian H; Zhang S; Yan X; Ying H; He W; Liang C; Zhang W; Hou X; Han WQ
    ACS Appl Mater Interfaces; 2018 May; 10(21):17933-17941. PubMed ID: 29738665
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries.
    Zhang F; Cao H; Yue D; Zhang J; Qu M
    Inorg Chem; 2012 Sep; 51(17):9544-51. PubMed ID: 22906577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis and Electrochemical Reaction of Tin Oxalate-Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries.
    Park JS; Jo JH; Yashiro H; Kim SS; Kim SJ; Sun YK; Myung ST
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25941-25951. PubMed ID: 28718628
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.
    Yang X; Zhang L; Zhang F; Huang Y; Chen Y
    ACS Nano; 2014 May; 8(5):5208-15. PubMed ID: 24749945
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries.
    Wang Z; Li Y; Liu P; Qi Q; Zhang F; Lu G; Zhao X; Huang X
    Nanoscale; 2019 Mar; 11(12):5330-5335. PubMed ID: 30843565
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of a Macroporous Conjugated Polymer Framework: Iron Doping for Highly Stable, Highly Efficient Lithium-Sulfur Batteries.
    Jia P; Hu T; He Q; Cao X; Ma J; Fan J; Chen Q; Ding Y; Pyun J; Geng J
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3087-3097. PubMed ID: 30586280
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries.
    Zhao C; Chen Z; Wang W; Xiong P; Li B; Li M; Yang J; Xu Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11992-11998. PubMed ID: 32266770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers.
    Lu S; Cheng Y; Wu X; Liu J
    Nano Lett; 2013 Jun; 13(6):2485-9. PubMed ID: 23688337
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries.
    Wang T; Villegas Salvatierra R; Jalilov AS; Tian J; Tour JM
    ACS Nano; 2017 Nov; 11(11):10761-10767. PubMed ID: 28953348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. LiV
    Zhu L; Xie L; Cao X
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10909-10917. PubMed ID: 29516728
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbon Nanoscrolls for Aluminum Battery.
    Liu Z; Wang J; Ding H; Chen S; Yu X; Lu B
    ACS Nano; 2018 Aug; 12(8):8456-8466. PubMed ID: 30048113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries.
    Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Viable Synthesis of Porous MnCo
    Karkera G; Chandrappa SG; Prakash AS
    Chemistry; 2018 Nov; 24(65):17303-17310. PubMed ID: 30176089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Pyrazine-Based Polymer for Fast-Charge Batteries.
    Mao M; Luo C; Pollard TP; Hou S; Gao T; Fan X; Cui C; Yue J; Tong Y; Yang G; Deng T; Zhang M; Ma J; Suo L; Borodin O; Wang C
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17820-17826. PubMed ID: 31571354
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.
    Wang H; Yang Y; Liang Y; Robinson JT; Li Y; Jackson A; Cui Y; Dai H
    Nano Lett; 2011 Jul; 11(7):2644-7. PubMed ID: 21699259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.