BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

959 related articles for article (PubMed ID: 22449243)

  • 1. Dynamic nanoparticle assemblies.
    Wang L; Xu L; Kuang H; Xu C; Kotov NA
    Acc Chem Res; 2012 Nov; 45(11):1916-26. PubMed ID: 22449243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and application of inorganic nanoparticle superstructures: current status and future challenges.
    Gao Y; Tang Z
    Small; 2011 Aug; 7(15):2133-46. PubMed ID: 21626691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Nano-superstructures and Their Optical Properties.
    Qi F; Jeong KJ; Gong J; Tang Z
    Acc Chem Res; 2022 Sep; 55(17):2425-2438. PubMed ID: 35977155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially confined assembly of nanoparticles.
    Jiang L; Chen X; Lu N; Chi L
    Acc Chem Res; 2014 Oct; 47(10):3009-17. PubMed ID: 25244100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability.
    Xu L; Ma W; Wang L; Xu C; Kuang H; Kotov NA
    Chem Soc Rev; 2013 Apr; 42(7):3114-26. PubMed ID: 23455957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.
    Kuang H; Ma W; Xu L; Wang L; Xu C
    Acc Chem Res; 2013 Nov; 46(11):2341-54. PubMed ID: 23742672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials.
    Chen W; Bian A; Agarwal A; Liu L; Shen H; Wang L; Xu C; Kotov NA
    Nano Lett; 2009 May; 9(5):2153-9. PubMed ID: 19320495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientational nanoparticle assemblies and biosensors.
    Ma W; Xu L; Wang L; Kuang H; Xu C
    Biosens Bioelectron; 2016 May; 79():220-36. PubMed ID: 26708241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-Driven Nanoparticle Assemblies for Biosensing and Bioimaging.
    Zhao Y; Shi L; Kuang H; Xu C
    Top Curr Chem (Cham); 2020 Feb; 378(1):18. PubMed ID: 32009187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unknown aspects of self-assembly of PbS microscale superstructures.
    Querejeta-Fernández A; Hernández-Garrido JC; Yang H; Zhou Y; Varela A; Parras M; Calvino-Gámez JJ; González-Calbet JM; Green PF; Kotov NA
    ACS Nano; 2012 May; 6(5):3800-12. PubMed ID: 22515512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.
    Guo P
    J Nanosci Nanotechnol; 2005 Dec; 5(12):1964-82. PubMed ID: 16430131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances towards the fabrication and biomedical applications of responsive polymeric assemblies and nanoparticle hybrid superstructures.
    Hu X; Liu S
    Dalton Trans; 2015 Mar; 44(9):3904-22. PubMed ID: 25579704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-dimensional necklace-like assemblies of inorganic nanoparticles: Recent advances in design, preparation and applications.
    Generalova AN; Oleinikov VA; Khaydukov EV
    Adv Colloid Interface Sci; 2021 Nov; 297():102543. PubMed ID: 34678536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Ligand Interactions and Their Roles in Controlling Nanoparticle Formation and Functions.
    Guan H; Harris C; Sun S
    Acc Chem Res; 2023 Jun; 56(12):1591-1601. PubMed ID: 37205747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring Interfacial Nanoparticle Organization through Entropy.
    Zhu G; Huang Z; Xu Z; Yan LT
    Acc Chem Res; 2018 Apr; 51(4):900-909. PubMed ID: 29589915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles.
    Wang H; Li H; Gu P; Huang C; Chen S; Hu C; Lee E; Xu J; Zhu J
    Nanoscale; 2023 Feb; 15(5):2018-2035. PubMed ID: 36648016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications.
    Li L; Xing H; Zhang J; Lu Y
    Acc Chem Res; 2019 Sep; 52(9):2415-2426. PubMed ID: 31411853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous self-organization enables dielectrophoresis of small nanoparticles and formation of photoconductive microbridges.
    Jung SH; Chen C; Cha SH; Yeom B; Bahng JH; Srivastava S; Zhu J; Yang M; Liu S; Kotov NA
    J Am Chem Soc; 2011 Jul; 133(28):10688-91. PubMed ID: 21651294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer pattern-induced self-assembly of inorganic nanoparticles.
    Wang J; Zhu B; Wang Y; Hao Y; Zhang J; Li Z
    Soft Matter; 2021 Dec; 18(1):97-106. PubMed ID: 34870666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.