These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22449277)

  • 1. Remote Raman spectroscopy for planetary exploration: a review.
    Angel SM; Gomer NR; Sharma SK; McKay C
    Appl Spectrosc; 2012 Feb; 66(2):137-50. PubMed ID: 22449277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The Research of Spatial Heterodyne Raman Spectroscopy with Standoff Detection].
    Hu GX; Xiong W; Luo HY; Shi HL; Li ZW; Shen J; Fang XJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):3951-7. PubMed ID: 30235500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New trends in telescopic remote Raman spectroscopic instrumentation.
    Sharma SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved Raman spectroscopy for in situ planetary mineralogy.
    Blacksberg J; Rossman GR; Gleckler A
    Appl Opt; 2010 Sep; 49(26):4951-62. PubMed ID: 20830184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standoff ultracompact micro-Raman sensor for planetary surface explorations.
    Abedin MN; Bradley AT; Misra AK; Bai Y; Hines GD; Sharma SK
    Appl Opt; 2018 Jan; 57(1):62-68. PubMed ID: 29328119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote Raman measurements of minerals, organics, and inorganics at 430  m range.
    Acosta-Maeda TE; Misra AK; Muzangwa LG; Berlanga G; Muchow D; Porter J; Sharma SK
    Appl Opt; 2016 Dec; 55(36):10283-10289. PubMed ID: 28059247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote Raman Efficiencies and Cross-Sections of Organic and Inorganic Chemicals.
    Acosta-Maeda TE; Misra AK; Porter JN; Bates DE; Sharma SK
    Appl Spectrosc; 2017 May; 71(5):1025-1038. PubMed ID: 27645726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Minerals and Organics Relevant to Planetary Exploration Using a Compact Portable Remote Raman System at 122 Meters.
    Sandford MW; Misra AK; Acosta-Maeda TE; Sharma SK; Porter JN; Egan MJ; Abedin MN
    Appl Spectrosc; 2021 Mar; 75(3):299-306. PubMed ID: 32613858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters.
    Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standoff spectroscopy of surface adsorbed chemicals.
    Van Neste CW; Senesac LR; Thundat T
    Anal Chem; 2009 Mar; 81(5):1952-6. PubMed ID: 19186935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy on Mars: identification of geological and bio-geological signatures in Martian analogues using miniaturized Raman spectrometers.
    Hutchinson IB; Ingley R; Edwards HG; Harris L; McHugh M; Malherbe C; Parnell J
    Philos Trans A Math Phys Eng Sci; 2014 Dec; 372(2030):. PubMed ID: 25368350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and development of a stand-off Raman brassboard (SDU-RRS) for the spectroscopic study of planetary materials.
    Qi X; Liu P; Qu H; Liu C; Bao G; Wang X; Liu Y; Xin Y; Cao H; Chen J; Xiao A; Zhao Y; Xue B; Xu W; Shu R; Ling Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 325():125026. PubMed ID: 39216145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV Raman spectroscopy--a technique for biological and mineralogical in situ planetary studies.
    Tarcea N; Harz M; Rösch P; Frosch T; Schmitt M; Thiele H; Hochleitner R; Popp J
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1029-35. PubMed ID: 17890146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics.
    Vandenabeele P; Edwards HG; Jehlička J
    Chem Soc Rev; 2014 Apr; 43(8):2628-49. PubMed ID: 24382454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote Raman spectroscopy of natural rocks.
    Berlanga G; Acosta-Maeda TE; Sharma SK; Porter JN; Dera P; Shelton H; Taylor GJ; Misra AK
    Appl Opt; 2019 Nov; 58(32):8971-8980. PubMed ID: 31873679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standoff Raman spectroscopy for architectural interiors from 3-15 m distances.
    Li Y; Cheung CS; Kogou S; Liggins F; Liang H
    Opt Express; 2019 Oct; 27(22):31338-31347. PubMed ID: 31684368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galileo Avionica's technologies and instruments for planetary exploration.
    Battistelli E; Falciani P; Magnani P; Midollini B; Preti G; Re E
    Orig Life Evol Biosph; 2006 Dec; 36(5-6):587-96. PubMed ID: 17120125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Remote Raman System and Its Applications for Planetary Material Studies.
    Qu H; Ling Z; Qi X; Xin Y; Liu C; Cao H
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doubly-charged ions in the planetary ionospheres: a review.
    Thissen R; Witasse O; Dutuit O; Wedlund CS; Gronoff G; Lilensten J
    Phys Chem Chem Phys; 2011 Nov; 13(41):18264-87. PubMed ID: 21931881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters.
    Sharma SK; Misra AK; Lucey PG; Angel SM; McKay CP
    Appl Spectrosc; 2006 Aug; 60(8):871-6. PubMed ID: 16925922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.