BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1309 related articles for article (PubMed ID: 22449442)

  • 41. Role of angiotensin II in retinal leukostasis in the diabetic rat.
    Chen P; Scicli GM; Guo M; Fenstermacher JD; Dahl D; Edwards PA; Scicli AG
    Exp Eye Res; 2006 Nov; 83(5):1041-51. PubMed ID: 16822509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo.
    Joussen AM; Poulaki V; Qin W; Kirchhof B; Mitsiades N; Wiegand SJ; Rudge J; Yancopoulos GD; Adamis AP
    Am J Pathol; 2002 Feb; 160(2):501-9. PubMed ID: 11839570
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two isoforms of Flk-1 transcripts in early diabetic rat retinas.
    Zhang X; Chen M; Gillies MC
    Curr Eye Res; 2012 Jan; 37(1):73-9. PubMed ID: 22121831
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intravitreal injection of exendin-4 analogue protects retinal cells in early diabetic rats.
    Zhang Y; Zhang J; Wang Q; Lei X; Chu Q; Xu GT; Ye W
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):278-85. PubMed ID: 20688733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ERK1/2/COX-2/PGE2 signaling pathway mediates GPR91-dependent VEGF release in streptozotocin-induced diabetes.
    Li T; Hu J; Du S; Chen Y; Wang S; Wu Q
    Mol Vis; 2014; 20():1109-21. PubMed ID: 25324681
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Silybin reduces obliterated retinal capillaries in experimental diabetic retinopathy in rats.
    Zhang HT; Shi K; Baskota A; Zhou FL; Chen YX; Tian HM
    Eur J Pharmacol; 2014 Oct; 740():233-9. PubMed ID: 25066112
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vascular endothelial growth factor and its receptors in control and diabetic rat eyes.
    Gilbert RE; Vranes D; Berka JL; Kelly DJ; Cox A; Wu LL; Stacker SA; Cooper ME
    Lab Invest; 1998 Aug; 78(8):1017-27. PubMed ID: 9714188
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blocking IL-17A Alleviates Diabetic Retinopathy in Rodents.
    Qiu AW; Liu QH; Wang JL
    Cell Physiol Biochem; 2017; 41(3):960-972. PubMed ID: 28222445
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of interleukin-1beta in the development of retinopathy in rats: effect of antioxidants.
    Kowluru RA; Odenbach S
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4161-6. PubMed ID: 15505070
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of phospholipases A2 in diabetic retinopathy: in vitro and in vivo studies.
    Lupo G; Motta C; Giurdanella G; Anfuso CD; Alberghina M; Drago F; Salomone S; Bucolo C
    Biochem Pharmacol; 2013 Dec; 86(11):1603-13. PubMed ID: 24076420
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Upregulation of retinal neuronal MCP-1 in the rodent model of diabetic retinopathy and its function in vitro.
    Dong N; Li X; Xiao L; Yu W; Wang B; Chu L
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7567-75. PubMed ID: 23010641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aquaporin changes during diabetic retinopathy in rats are accelerated by systemic hypertension and are linked to the renin-angiotensin system.
    Qin Y; Ren H; Hoffman MR; Fan J; Zhang M; Xu G
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):3047-53. PubMed ID: 22491408
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dexamethasone inhibits leukocyte accumulation and vascular permeability in retina of streptozotocin-induced diabetic rats via reducing vascular endothelial growth factor and intercellular adhesion molecule-1 expression.
    Wang K; Wang Y; Gao L; Li X; Li M; Guo J
    Biol Pharm Bull; 2008 Aug; 31(8):1541-6. PubMed ID: 18670086
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ethanol extract of Dendrobium chrysotoxum Lindl ameliorates diabetic retinopathy and its mechanism.
    Gong CY; Yu ZY; Lu B; Yang L; Sheng YC; Fan YM; Ji LL; Wang ZT
    Vascul Pharmacol; 2014 Sep; 62(3):134-42. PubMed ID: 24846859
    [TBL] [Abstract][Full Text] [Related]  

  • 55. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability.
    Harhaj NS; Felinski EA; Wolpert EB; Sundstrom JM; Gardner TW; Antonetti DA
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):5106-15. PubMed ID: 17065532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Association of the TLR4 signaling pathway in the retina of streptozotocin-induced diabetic rats.
    Wang YL; Wang K; Yu SJ; Li Q; Li N; Lin PY; Li MM; Guo JY
    Graefes Arch Clin Exp Ophthalmol; 2015 Mar; 253(3):389-98. PubMed ID: 25359392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of the blockade of the IL-23-Th17-IL-17A pathway on streptozotocin-induced diabetic retinopathy in rats.
    Xu H; Cai M; Zhang X
    Graefes Arch Clin Exp Ophthalmol; 2015 Sep; 253(9):1485-92. PubMed ID: 25371107
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression of macrophage colony-stimulating factor (M-CSF) and its receptor in streptozotocin-induced diabetic rats.
    Liu W; Xu GZ; Jiang CH; Da CD
    Curr Eye Res; 2009 Feb; 34(2):123-33. PubMed ID: 19219684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. LncRNA HOTTIP improves diabetic retinopathy by regulating the p38-MAPK pathway.
    Sun Y; Liu YX
    Eur Rev Med Pharmacol Sci; 2018 May; 22(10):2941-2948. PubMed ID: 29863235
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of the regimen of Gaoshan Hongjingtian on the mechanism of poly (ADP-ribose) polymerase regulation of nuclear factor kappa B in the experimental diabetic retinopathy.
    Zhao HS; Shi XY; Wei WB; Wang NL
    Chin Med J (Engl); 2013; 126(9):1693-9. PubMed ID: 23652053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 66.