These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 22449721)
1. Patterns of [PSI (+) ] aggregation allow insights into cellular organization of yeast prion aggregates. Tyedmers J Prion; 2012 Jul; 6(3):191-200. PubMed ID: 22449721 [TBL] [Abstract][Full Text] [Related]
2. The role of pre-existing aggregates in Hsp104-dependent polyglutamine aggregate formation and epigenetic change of yeast prions. Kimura Y; Koitabashi S; Kakizuka A; Fujita T Genes Cells; 2004 Aug; 9(8):685-96. PubMed ID: 15298677 [TBL] [Abstract][Full Text] [Related]
3. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312 [TBL] [Abstract][Full Text] [Related]
4. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae. Du Z; Valtierra S; Li L Prion; 2014; 8(6):387-92. PubMed ID: 25517561 [TBL] [Abstract][Full Text] [Related]
5. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation. Aslam K; Tsai CJ; Hazbun TR Prion; 2016 Nov; 10(6):444-465. PubMed ID: 27690738 [TBL] [Abstract][Full Text] [Related]
6. Implications of the Actin Cytoskeleton on the Multi-Step Process of [ Dorweiler JE; Lyke DR; Lemoine NP; Guereca S; Buchholz HE; Legan ER; Radtke CM; Manogaran AL Viruses; 2022 Jul; 14(7):. PubMed ID: 35891561 [TBL] [Abstract][Full Text] [Related]
7. Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35. Sergeeva AV; Sopova JV; Belashova TA; Siniukova VA; Chirinskaite AV; Galkin AP; Zadorsky SP Prion; 2019 Jan; 13(1):21-32. PubMed ID: 30558459 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of yeast prion aggregates in single living cells. Kawai-Noma S; Ayano S; Pack CG; Kinjo M; Yoshida M; Yasuda K; Taguchi H Genes Cells; 2006 Sep; 11(9):1085-96. PubMed ID: 16923127 [TBL] [Abstract][Full Text] [Related]
9. Life cycle of yeast prions: propagation mediated by amyloid fibrils. Inoue Y Protein Pept Lett; 2009; 16(3):271-6. PubMed ID: 19275740 [TBL] [Abstract][Full Text] [Related]
10. Biochemical and genetic methods for characterization of [PIN+] prions in yeast. Liebman SW; Bagriantsev SN; Derkatch IL Methods; 2006 May; 39(1):23-34. PubMed ID: 16793281 [TBL] [Abstract][Full Text] [Related]
11. Actin, Membrane Trafficking and the Control of Prion Induction, Propagation and Transmission in Yeast. Moosavi B; Mousavi B; Yang GF Traffic; 2016 Jan; 17(1):5-20. PubMed ID: 26503767 [TBL] [Abstract][Full Text] [Related]
12. The actin cytoskeletal network plays a role in yeast prion transmission and contributes to prion stability. Dorweiler JE; Oddo MJ; Lyke DR; Reilly JA; Wisniewski BT; Davis EE; Kuborn AM; Merrill SJ; Manogaran AL Mol Microbiol; 2020 Sep; 114(3):480-494. PubMed ID: 32426863 [TBL] [Abstract][Full Text] [Related]
13. Analyzing the birth and propagation of two distinct prions, [PSI+] and [Het-s](y), in yeast. Mathur V; Taneja V; Sun Y; Liebman SW Mol Biol Cell; 2010 May; 21(9):1449-61. PubMed ID: 20219972 [TBL] [Abstract][Full Text] [Related]
14. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains. Shattuck JE; Waechter AC; Ross ED Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753 [TBL] [Abstract][Full Text] [Related]
15. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. Kryndushkin DS; Alexandrov IM; Ter-Avanesyan MD; Kushnirov VV J Biol Chem; 2003 Dec; 278(49):49636-43. PubMed ID: 14507919 [TBL] [Abstract][Full Text] [Related]
16. In vitro analysis of SpUre2p, a prion-related protein, exemplifies the relationship between amyloid and prion. Immel F; Jiang Y; Wang YQ; Marchal C; Maillet L; Perrett S; Cullin C J Biol Chem; 2007 Mar; 282(11):7912-20. PubMed ID: 17234629 [TBL] [Abstract][Full Text] [Related]
17. Prion aggregate structure in yeast cells is determined by the Hsp104-Hsp110 disaggregase machinery. O'Driscoll J; Clare D; Saibil H J Cell Biol; 2015 Oct; 211(1):145-58. PubMed ID: 26438827 [TBL] [Abstract][Full Text] [Related]
18. Protein-only transmission of three yeast prion strains. King CY; Diaz-Avalos R Nature; 2004 Mar; 428(6980):319-23. PubMed ID: 15029195 [TBL] [Abstract][Full Text] [Related]
19. Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation. Tyedmers J; Treusch S; Dong J; McCaffery JM; Bevis B; Lindquist S Proc Natl Acad Sci U S A; 2010 May; 107(19):8633-8. PubMed ID: 20421488 [TBL] [Abstract][Full Text] [Related]
20. The Gln3 Transcriptional Regulator of Saccharomyces cerevisiae Manifests Prion-Like Properties upon Overproduction. Antonets KS; Belousov MV; Belousova ME; Nizhnikov AA Biochemistry (Mosc); 2019 Apr; 84(4):441-451. PubMed ID: 31228936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]